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ABSTRACT. We construct a many-object dual version of Chen’s iterated in-
tegral map. For any topological space X, the construction takes the form of
an Aso-functor between two dg categories whose objects are the points of X:
the domain has as morphisms the singular (cubical) chains on the space of
(Moore) paths in X and the codomain has morphisms arising by totalizing a
cosimplicial chain complex determined by the dg coalgebra of singular (sim-
plicial) chains in X. When X is simply connected, we show this construction
defines a homotopy inverse to a classical map of Adams, which sends ordered
sequences of singular simplices in X linked by shared vertices to cubes of paths
in X. When X is not necessarily simply connected, following an idea of Irie, we
incorporate the fundamental groupoid of X into the construction and deduce
analogous results. Along the way, we provide an elementary and new proof of
the fact that the (direct-sum) cobar construction of the chains in X, suitably
interpreted, models the dg category of paths in X, an extension of Adams’s
cobar theorem established by Rivera-Zeinalian using different methods.

1. INTRODUCTION

Denote by
P: Top — Catrop

the functor that associates to any topological space! X the topologically enriched
category PX defined as follows. The objects of PX are the points of X and, for
any two a,b € X, the morphism space PX (a,b) is the set of all pairs (v, T), where
T € R and v: [0,7] — X is a continuous path with y(0) = @ and v(T) = b,
equipped with the compact-open topology. The composition rule on PX is defined
by concatenating paths and adding the corresponding parameters. The identity
morphism at an object b € X is given by the constant path v: {0} = [0,0] — X,
~(0) = b. The topological monoid PX (b, b) is the space €, X of Moore loops in X
based at b.
For a fixed commutative ring with unit R, denote by

CP: Catrop — dgCatp

the functor that associates to any topologically enriched category the differential
graded (dg) R-category obtained by applying the normalized cubical singular chains
with coefficients in R at the level of spaces of morphisms. Similarly, denote by C
the functor that applies normalized simplicial singular chains instead. The main
purpose of this article is to compare the functor

(1.1) CH o P: Top — dgCatj,

1Throughout this paper, topological spaces are always assumed to be locally path-connected
and semilocally simply connected.
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and the following different versions of the cobar construction.

(1)

The classical cobar construction. This is a functor
Cobar: dgCoalgy — dgAlgp

which takes a dg coaugmented (coassociative) R-coalgebra C' as input and
produces a dg augmented (associative) R-algebra Cobar(C'). The underlying
graded algebra of Cobar(C) is the free algebra T(s7'C) = @, ,(s71C)®"
where C is the cokernel of the coaugmentation of C' and s~! denotes the shift
functor, i.e., (s71C); = C;11. The differential of Cobar(C) is induced by the
sum 0 + A, where 9: C — C is the differential of C' and A: C — C ® C is
the coassociative coproduct of C'. The functor Cobar is a left adjoint with right
adjoint being the classical bar construction Bar. The main example we apply
this construction to is the dg coaugmented coalgebra of singular chains on a
pointed space (X, b).

(See |Riv24; [HL22|). A “many object” version of the cobar construction. This
is a functor

Cobar®: cCoalgp — dgCatp

that takes a categorical R-coalgebra € to a dg category Cobarg((ﬁ). Three
features of a categorical coalgebra € are (i) € is a non-negatively graded R-
coalgebra such that Cy = R[8] for some set 8, (ii) the “differential” @ on C does
not square to zero but its failure is controlled by a “curvature” term, and (iii)
C has a compatible Cp-bicomodule structure. The set of objects in Cobar®(€
is 8. For a,b € 8, the definition of Cobar®(€)(a,b) is recalled in section
here we just point that the generators are ordered sequences of elements of C
“connecting” a and b (expressed as monomials over the cotensor product X
over €) and the differential on Cobar™(€)(a, b) is induced by & + A + h where
h is the curvature of €. A natural example of a categorical coalgebra may be
obtained for any topological space X with 8 being the underlying set of X by
slightly modifying the dg coalgebra of singular chains on X giving a functor
C : Top — cCoalgp.
For simplicity, we write € (X) as C(X).
A cosimplicial totalized “many-object” version of the cobar construction. This
is a functor .
Cobarll: dgCoalg®? — dgCaty
where the input is a dg R-coalgebra C' such that Cy = R[S] for some set of
cycles S, which we call “objects”. The set of objects in CobarH(C’) is S, and for
a,b € S, Cobarll(C)(a,b) is defined as the totalization of certain cosimplicial
chain complex defined by the coalgebra structure of C' (and hence the direct
product symbol in the notation); see Section for more details. An example
of such a C is obtained from a topological space X with S being the underlying
set of X and C being the dg coalgebra of singular chains on X this gives a
functor ‘
C :Top— dgCoaIg%bJ,
and, for simplicity, we may write C' (X) as C(X).
The “many object” versions of the cobar construction lead to functors

(1.2) Cobar® 0 € : Top — dgCatp,
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(1.3) Cobarllo ¢ : Top — dgCatp.

In this article, we establish an explicit relationship between the functors (|1.1)), (1.2]),
and (1.3]).
First, a classical construction of Adams’ gives a natural transformation
A: Cobar® o€ = CHoP.

The idea behind the construction of A is to associate to any ordered sequence of
simplices in X linked by a shared vertex (a “necklace” in X) a suitable cube of
paths connecting the first and last vertices in the sequence.

Remark 1.1. Adams |[Ada56] originally worked with Cobar(C*(X, b)), where b € X
is a base point and C'(X,b) is the dg coaugmented coalgebra of 1-reduced singular
chains on (X,b). This construction naturally extends to Cobar®(C (X)).

Next, for any topological space X, a variation (or “pre-dual” version) of Chen’s
iterated integral map gives natural chain maps

(1.4) Itx: CP(PX)(a,b) — Cobarll(C(X))(a,b),

for all a,b € X, induced by evaluating each path in PX (a, b) at all ordered sequences
of n marked points (which are determined by points in the n-simplex), for all n > 0;
see Section 2.2.2] for more details.

The maps all together do not define a (strict) functor of dg categories
CP(PX) — Cobarll(C(X)) since compositions are not preserved. However, we
have the following statement, which is the first main result of this article.

Theorem 1.2. The natural maps in (1.4) can be extended to a natural A..-
transformation

J= {9 n>1: CPoP = CobarlloC |
in the sense that for any topolog;cal space X,
Ix = {Txntnz1: CO(PX) — Cobarll(C(X))
is an Aoo-functor with Jx 1 = Itx, and the family {Jx} xeop is natural in X.

Remark 1.3. Chen [Che73] originally worked with cochains (differential forms)
on what he called differentiable spaces, which generalize smooth manifolds. In con-
trast, we work with singular chains on topological spaces, leading to the map J;
which is formally dual to Chen’s. The higher components J,, (n > 1) can be viewed
geometrically as arising from subdivisions of simplices compatible with path con-
catenation. These higher homotopies disappear after pairing with differential forms
via integration and are therefore not seen in Chen’s framework (see Remark [2.4]and
the subsequent discussion for details).

A natural transformation between two functors Top — dgCatpy is a natural A..-
transformation with vanishing higher components. Hence, given the natural A..-
transformations A and J, their composition J o A is a natural A..-transformation

F={Fu}n>1 = {In 0 A}p>1: Cobar® 0 @ = CobarlloC .
On the other hand, there is a straightforwardly defined natural transformation

G: Cobar® 0@ = CobarlloC
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that, roughly speaking, is induced by the inclusion of a direct sum into a direct
product (modulo the subtle difference between € and C' ). The following is the
second main result of the present article.

Theorem 1.4. The natural A,-transformations ¥ and G are A,,-homotopic, i.e.,
for any topological space X, there exists a natural A..-homotopy Hx between the
Aso-functors Fx and Gx.

Remark 1.5. Suppose X is simply connected, and fix a basepoint b € X. If
one restricts to the dg coalgebra of 1-reduced singular chains C*(X,b), then Gx
identifies Cobar™ with the conormalization of Cobarll. Thus, Theorem implies:

Chen’s iterated integral map, suitably extended and reinterpreted, is
a left As-homotopy inverse of Adams’ map for simply connected
topological spaces.

See Section [3.3 for a more detailed statement.

Recall that a functor C; — Cy between dg categories is called a quasi-equivalence
if it induces quasi-isomorphisms on all morphism complexes and an equivalence
Hy(Cy) ~ Hp(Cy). The same notion applies to Ay-categories and A.-functors,
where it is called an Ao -quasi-equivalence. Building on Remark[I.5 we then obtain:

Corollary 1.6. For any simply connected topological space X, the functor
Ax: Cobar®(C(X)) — CH(PX)

induced by Adams’ map is a quasi-equivalence if and only if the A,.-functor
Ix: CP(PX) — Cobarll(C(X))

motivated by Chen’s iterated integral map is an A,.-quasi-equivalence.

Recall that Adams [Ada56| constructed the map Cobar(C'(X,b)) — CP(Q,X)
and proved it is a quasi-isomorphism for simply connected X by comparing the
Serre spectral sequences associated with the path fibration. Chen [Che73| proved
that his original iterated integral map, which takes an ordered sequence of differ-
ential forms on a manifold M as input and produces a cochain in QM as output,
is a quasi-isomorphism for simply connected M by pairing with Adams’ cobar con-
struction and using spectral sequence arguments. Thus, Corollary [I.6] highlights the
structural feature underlying Chen’s proof and provides a conceptual explanation
for why that argument works.

An adaptation of Adams’ original argument yields that, for any simply connected
space X, the dg functor Ay : Cobar®(C(X)) — CH(PX) is a quasi equivalence (in
fact, we prove a stronger statement in this article, see Theorembelow). Together
with Corollary this immediately implies the following.

Corollary 1.7. If X is simply connected, the A..-functor
JIx: CP(PX) — Cobarll(C(X))
is an A,.-quasi-equivalence.
A natural question is whether Corollaries and extend to possibly non-
simply connected spaces. One may begin to address this by examining whether

Adams’ map and Chen’s iterated integral map remain quasi-isomorphisms when
X is not simply connected. In recent years, Adams’ theorem has been shown to
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extend to arbitrary topological spaces [RZ18]. In fact, it turns out that Ay is
a quasi-equivalence even when X is a non-simply connected space. We give an
elementary proof (independent of all the above results) of this extension of Adams’
theorem by lifting necklaces to the universal cover and using Adams’ original proof
for simply connected spaces.

Theorem 1.8. For any topological space X, the functor
Ax : Cobar®(€(X)) — CP(PX)
is a quasi-equivalence of dg categories.
Corollary 1.9 (JRZ18;|Riv22]). For any pointed topological space (X,b), Adams’
map
Cobar(C°(X,b)) — CP(Q,X)
is a quasi-isomorphism of dg algebras.

In contrast, Chen’s iterated integral map is not a quasi-isomorphism unless ad-
ditional assumptions are imposed on the fundamental group. Similarly, the map
Jx is generally not a quasi-equivalence for an arbitrary topological space X. To
address this issue in the non-simply connected case, it is necessary to modify the
functor Cobarll o ¢ and, accordingly, the natural A.-transformation J. To this

end, we incorporate the fundamental groupoid into the construction, following an
idea of Irie |Iril7; (Wan23|. The modification of Cobarll o ¢ defines a functor

CP: Top — dgCatp,
and there are natural chain maps
Itx: CP(PX)(a,b) = C°(X)(a,b), X eTop, abeX
induced by evaluation maps on path spaces. There is also a natural transformation
§: Cobar® o = CP

defined analogously to G. If X is simply connected, then CP(X), I~1€X, and §X
coincide with Cobarll (C(X)), Itx, and Gx, respectively.

We prove the following analogue of Theorem and Theorem as the fourth
main result of this article.

Theorem 1.10. The collection of natural chain maps {ft X }xeTop €xtends to a
natural A..-transformation

g: cPop = CP.
Moreover, there exists an A,,-homotopy H between the natural A -transformations

F=J0A and§ . Cobar®oC = CP.

For any topological space X, an analogue of Corollary holds where Fx, Sx,
and Jx are replaced by T X, § x, and ix, respectively. Together with Theorem
this shows that 5X is a quasi-equivalence for any topological space X. In this
sense, ix provides a formal and “correct” extension of Chen’s iterated integral map,
guaranteeing its quasi-equivalence property beyond the simply connected case. See
Section [l for further details.
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2. MAIN CONSTRUCTIONS

In this section, we give further details on the cobar constructions Cobarg, Coba rH,
the natural transformations A, § and the natural maps {Itx }xetop introduced in
Section [Il

2.1. Different versions of the cobar construction. In this subsection, we give
more details on the non-classical versions of the cobar construction.

2.1.1. The “many object” version . Given a set 8, denote by RI[8] the cocom-
mutative counital coalgebra given by the free R-module on § equipped with the
coproduct determined by b — b ® b for all b € §. We shall define a version of
the cobar construction which takes as an input the following notion introduced in
[Riv24].
A categorical R-coalgebra consists of a tuple (€, 9, A, h) where
(1) (€,A) is a non-negatively graded coassociative counital coalgebra that is
flat as an R-module
(2) 0:€ — Cis a degree —1 coderivation of the coproduct A
(3) h:€ — Ris a linear map of degree —2 satisfying h o 9 = 0 and

0?=(h®id—id®h) o A,

i.e. his a curvature for (C,0,A)

(4) The set
$(€) ={zeC:A(z) =z®z and ¢(z) = 1},
where : € — R denotes the counit, is non-empty and the natural inclusion
map 8(C) < €y induces an isomorphism of coalgebras
R[$(C)] = Cy.

(5) The natural projection € : € — €y satisfies e0o 0 =0

Any categorical coalgebra (€, 9, A, h) has a natural Cy-bicomodule structure with
structure maps given by

S ewe s ene,

and
p:C S eee e we.
Categorical coalgebras form a category with the following notion of morphism.
A morphism from (€, 9, A, h) to (€',9',A’, k') consists of a pair f = (fo, f1) where
(1) fo:(C,A) — (€, A") is a morphism of graded coalgebras
(2) f1:€— € is a Cp-bicomodule map of degree —1
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satisfying
food=0"o fo+ (f1 ® fo) o (A — A°) and
Wofo=h+fo00+ (f,®F)0A,

where f; = ¢’ o f; and ¢’ is the counit of €’. The composition of two morphisms is
defined by

(2.1) (90,91) © (fo, f1) = (g0 © fo, 91 © fo+ go o f1).

We denote by cCoalgy the category of categorical coalgebras.

Given a categorical coalgebra C, the dg category Cobar‘g(e) is defined as follows.
The objects are the elements of 8. Denote by X the cotensor product over Gy and
by s~! the degree shift functor by —1. For any two a,b € 8 we define

Cobar™(€)(a,b) = (P R. W (s 'C)F" K R,,
n=0
where, for any a € 8, R, is R equipped with the R[8]-bicomodule determined by
the inclusion {a} — 8, C = @;°, C;, and (s71€)¥ = €y. The identity morphism
at a € 8 corresponds to the unit of R through the following identification
lR€E R R, 2R, R (s 'C)¥°® R, C Cobar®(€)(a,a)o.
Each differential
D®: Cobar®(€)(a,b) — Cobar®(€)(a, b)

is induced by the sum & + A + h. The fact D® o D¥ = 0 then follows from the
compatibility of 9 and A, the coassociativity of A, and the curvature equation

relating h, 0, and A. The composition of morphisms is given by concatenation of
monomials. This construction gives rise to a functor

Cobar®: cCoalgp — dgCatp.

The normalized singular chains on a topological space may be regarded as a cat-
egorical coalgebra as we now explain. Recall that the classical normalized singular
chains functor

C, : Top — dgCoalgp
assigns to a space X a dg coalgebra (Ce(X),0,A) with coproduct A given by the
Alexander-Whitney diagonal approximation. This does not define a categorical
coalgebra with curvature 0 since, in general, €09 # 0, where €: Co(X) — Co(X) is
the canonical projection map. However, one may proceed as follows. Let

(2.2) e: Co(X)— R
be the 1-cochain induced by sending non-degenerate singular 1-simplices to 1z and
everything else to 0. Define a degree —1 linear map

9: Co(X) = Co_yr(X)
and a degree —2 linear map

h:Ce(X)—= R
by
0=0—-(ld®e—e®id)o A

and

h=(e®e)oA+eod,
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respectively. A straightforward check yields that C(X) = (Co(X),d, A, h) defines
a categorical coalgebra. Furthermore, this construction defines a functor

C: Top — cCoalgp.

2.1.2. The totalized cosimplicial version . For any dg R-coalgebra C' such that
Co = R[S], the dg category Cobarll(C) is defined as follows. The set of objects is
S, and for any a,b € S,

Cobarll(C)(a,b) = [[ Ra ® (s7'C)®" ® Ry,
n=0
Each differential
DIL: Cobarll(C)(a,b) — Cobarll(C)(a,b)

is induced by the sum @+ A. The composition of morphisms is given by concatena-
tion of monomials. The chain complex Cobarl[(C)(a, b) may also be described as the
totalization of a cosimplicial chain complex as follows. Recall that for a cosimplicial
chain complex [n] — (C(n), ), its totalization has underlying R-module

Tot!l({C(n)}nz0) = [] C(n)asn

and differential
DIl =945,
where ¢ is a signed sum of the coface maps; see, e.g., [Wan24, (2.4)]. Now, consider
C(n) =C(n;a,b) = R, @ C®" @ Ry

with coface maps

6t Ry@C®" '@ Ry, - R,@C®*" @R, (0<i<n)

ORIV Rep_1 Ry R Qi1 QA() Rcip1 ® - Ry

induced by the coproduct A : C - C® C wheni=1,...,n—1, and

Jo:Co®C1 @ @1 @ Cp = Pralco) ®e1 @+ @ cp1 @ Cp,

SniCo®C® @1 ®Cp > CoRC1 @+ R 1 @ prp(cn),
where the map p,, is defined as the composition

R,2R5RORYS ReC~R,®C

for i,: R — C being induced by the inclusion {a} < S and p;p: Ry = C ® R} is
defined similarly. The codegeneracy maps are defined by
0 Ra@C®" " @Ry, - R,@C®*" @R, (0<i<n)
ORIV ®Cpt1 QCpgarr R Q¢ Qe(Cig1) ®Ciga ®+ ® Cpia

where ¢ : € — Cy — R is the counit map. Then Cobarll(C)(a, b) is defined as the
totalization Tot!l ({C(n;a, b) }rn>0)-

The conormalization of the totalization Tot!l ({C(n;a,b)}ns0), which we de-
note by N¢Tot!l ({C(n;a, b)}n>0), is the subcomplex where any o; vanishes. The
inclusion N¢Tot!l — TotIl is a quasi-isomorphism (cf. [Iri17, Lemma 2.5)).
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Example 2.1. Let X be a topological space and let b € X. We are interested in
the following examples of differential graded coalgebras C' equipped with a set of
objects S such that Cy = R[S]:

o C'=C(C.(X), with S the set of points in X.

o O'=C2X,b) or CL(X,b), with S = {b}.
In case X = M is a smooth manifold, we may also restrict the discussion to piece-
wise smooth singular chains C%.

2.2. The natural transformations A,S§ and the natural map Itx. For any
topological space X, the functors Ax, Gx act as the identity on objects. In the
following, we describe the action of Ax, Gx and Itx on the morphism complexes.

2.2.1. The “many object” version of Adams’ map. Denote by vy, ..., v, the vertices
of the standard n-simplex ™ C R™*!. Using the method of acyclic models, one
may construct a collection of singular cubical chains
{0 "7 = P ™) (00, v0) bzt
such that
(1) 61(0) € P( Y)(vg,v1) is the (Moore) path 61(0): [0,1/2] — ! given by
5
01(0)(s) = vg + —=(v1 — vg),
1(0)(s) = vo ﬂ( 1= o)
and
(2)
n—1 n—1

aD o 911 = Z(_l)l(P(ln—z,n) o en—i) * (P(fz,n) o 91) - Z(_l)zp(dl) o 01'7

i=1 i=1

where lj,: 7 < ™ and fj,: 7 < ™ denote the last and first j-
dimensional face inclusions, respectively, d;: ™! < ™ denotes the i-th
face inclusion, and * denotes concatenation of paths.

See [MR24}, Section 3.4] for a description of an explicit choice of maps {6, }n>1-
This construction goes back to [Ada56, Section 3].

Any such collection of maps {6, },>1 gives rise to a well defined linear map of
degree —1

Ax: €(X) —» @ CP(P(X))(a,b)
a,beX

by sending a class represented by a singular chain o: ™ — X to

Ax (o) =P(a)0b,: I"' = P(X)(c(v0),0(vn)).
The map Ax satisfies the (curved) Maurer-Cartan equation

Ol oAx —Axod==x0(Ax ® Ax)o A+ h,

where h: €(X) — Do rex CY(P(X))(a,b) is the degree —2 map given by the com-
position

C(X) 25 C(X) ® Co(X) 224 R @ €y (X) = Cy(X)

— @ CP(P(X))(a,a) = € CZ(P(X))(a,b).

a€X a,beX
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Extending Ax to be compatible with composition, for any a,b € X, we obtain a
natural degree 0 linear map

Ax : Cobar®(€(X))(a,b) — CO(P(X))(a,b),
which, by the Maurer-Cartan equation above, is a chain map.

2.2.2. A formal dual of Chen’s iterated integral map. Given a,b € X, the chain map
(2.3) Itx: CP(PX)(a,b) — Cobarll(C(X))(a,b)
is defined as the composition of several maps specified below.
Step 1. There is a natural chain map
n : CI(PX)(a,b) — C,(PX)(a,b) = Co(PX(a,b)),

induced by the standard triangulation of cubes. Concretely, for any singular cube
A: [0,1]" = PX(a,b),
P 0= X 10 do,
TESK
where S,, denotes the symmetric group on n letters, and

tr: [071]n7 (tla"'atn)}_}(tT(l)a"'atT(n))
for 0 <ty <--- <t, <1. More generally,
ool = o,

is a natural transformation from the normalized cubical singular chain functor on
topological spaces to the normalized simplicial singular chain functor; the map
displayed above is its component at the space PX (a,b) and these are natural with
respect to continuous maps of spaces.

Step 2. Consider the cosimplicial space

[n] — PX(a,b) x "
with cosimplicial structure induced from the standard one [n] — ™. Set
Up =1id » € Cp( "), uw = {un}n>o0.
Then, the linear maps
Coe(PX(a,0)) = Corn(PX(a,b) x ™), xz— (—1)"x X uy,
for all n > 0 together induce a chain map
®,: Co(PX(a,b)) = Totll({C(PX (a,b) x ™)}nz0).
More generally, any choice of u = {u, € C,,( ™)},>0 that satisfies

(2.4) [uo] = [id o] € Ho( ) and Ou, = Z(—l)i(di)*(un_l) (Yn>1)
i=0

suffices to define ®,,. Moreover, by an acyclic models argument, using the fact that
H,41( ™) =0 for all n > 0, one can show that the chain homotopy class of ®,, is
independent of the choice of u.

Step 3. Consider the cosimplicial space n — {a} x X™ x {b} with cofaces induced
by the diagonal map and codegeneracies given by forgetful maps. The evaluation
maps

Ev,: PX(a,b) x " —{a} x X" x {b},
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((’Y? T)? (t17 e 7t7l)) — (a77(t1T)7 M 77(tnT)7 b)
for all n > 0 respect cosimplicial structures, inducing a chain map
Ev.: Tot!l({C(PX (a,b) x ™)}n>0) = Totll({C({a} x X™ x {b})}n>0)-

Step 4. Iterations of the standard Alexander-Whitney map define a cosimplicial
chain map

AW, : Co({a} x X" x {b}) = (Ra @ C(X)®" @ Rp)e, n >0,
inducing a chain map
AW : Totll({C({a} x X™ x {b})}ns0) — Cobarl[(C(X))(a,b).
We have thus defined as the composition
Ity = AW oEv, 0 ®, on™ |

Remark 2.2. In the definition of Ityx, we chose to triangulate cubes right from
the beginning. Alternatively, one may remain in the setting of normalized cubical
singular chains and pass to normalized simplicial singular chains later, either before
Ev, or before AW. In this case,

Itx = AW on™ oEv,o0®, = AW oEv, on™ o®,,

where v = {v, € CJ( ") }n>0 is chosen such that vy is the unique point map and

n

v, = Z(—l)i(di)*(vn,l) for all n > 1.
i=0

Lemma below, together with the fact that n™ intertwines the cross products
on cubes and simplices, implies that these two approaches are equivalent:

Ev. o@uonu’ :7]‘:" oEv,o®, =Ev, 07]‘:" o®,
if v =7 Y(u) oru=n" (v). Note that v =5 *H(u) acturally implies u = 7™ (v)
by Lemma |2.3]

Lemma 2.3. There is a natural transformation
ntC, = CF

from the normalized simplicial singular chain functor to the normalized cubical
singular chain functor, such that

nD’ on b= idg, .

Proof. For every n > 0, define a folding map
o I™ — A”, oty .. tn) = (t),...,t)), t, =max{ty,..., tx}.

A similar map appears in [[gu09, Section 4.2], although for a different purpose.
For any topological space Y and any singular simplex o: A™ — Y, define

ny (o) =00 fu: I" =Y,

and extend linearly to C, (Y'). By construction, nY’D is natural in Y.

To see that nY’D is a chain map, observe that among the cubical faces of r]Y’D(a),
those of the form {¢; = 1} with & < n are degenerate, while the remaining n + 1
non-degenerate faces correspond exactly to the simplicial faces of o.
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Finally, to verify that 775" o nY’D =1idg, (v), compute

(ny ony (o) =D sgn(r)oo frotr =0,

TES,
since f, o ¢, is degenerate whenever 7 # id, and f, o tjg = idan. O

Remark 2.4. Let M be a smooth manifold, 2*(M) the dg algebra of differential
forms on M, and P*M(a,b) the space of piecewise smooth Moore loops in M from
a to b. Set R = R. The iterated integral map for P*M (a, b), originally due to Chen
in [Che73]|, is a cochain map

(2.5) /: Bar(Rq, Q(M),Rp) — Q°(P°M(a, b)),

where Bar denotes a version of the classical bar construction and differential forms
on P5M(a,b) are defined via the framework of of differentiable spaces. Following
the presentation in [GJP91], [ is induced by a sequence of maps

R, @ Q*(M)®?" @R, — Q*({a} x M™ x {b})
Y Qe (P M(a,b) x ™) s Qe (P M (a, b))
for n > 0, where [, denotes integration along the fibers. Consider the pairing
QV)xC;(Y) =R
induced by integration, where Y is M or PSM(a,b), and the pairing
(2.6) Bar(R,, Q2*(M),R;) x Cobarll(C3(M))(a,b) = R

N
<Zl®wn,l®"'®wn,n®]—v <1®am’1®"'®am,m®]—)m20>

N
Z Wn, 1, On, 1 <wn,n7 an,n>

induced by summing up integrations levelwise. There is a chain map
Itpr: CH(PPM(a, b)) — Cobar (C*(M))(a,b)
defined analogously to (2.3). The maps Ity; and f (2.5) are formally dual in the

sense that
</w, a> = <w, ItM(a)>

for any w € Bar(R,,Q*(M),Ry) and « € C5(P5M (a,b)).

Now set a = b, and denote the product on C5(P*M(a, a)) by x. For brevity, write
1w ® - Quw, ®1 as wy -+ -wy. For any a, f € C3(PM(a,a)) and wy,...,w, €
Q(M), we have

(2.7) <w1~--wn,ItM(a><ﬁ)> = </w1---wn, a><6>

_zn:</w1 Wi, Q /Wi+1"'wnvﬂ>
<

wi - ewi, Tty (a ><Wi+1"'wn7 ItM(ﬁ)>
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= <w1 W, ItM(a)ItM(B)>,

where the equality on the second line is exactly [Che73, (1.6.2)], and the last line fol-
lows from the fact that the concatenation product on Cobarl[(C$(M))(a, b) is dual
to the deconcatenation coproduct on Bar(R,, Q2°(M),R,) under the pairing (2:6).
Equation suggests that Ity preserves the products (compositions) up to
terms that vanish under the integration pairing with differential forms. A more
general and precise statement is Theorem [I.2] which we prove in Section [3.1

2.2.3. The natural transformation §. For any a,b € X, define a degree 0 linear map
Gx: R, R s '€(X) K R, — Cobarll(C(X))(a,b)
such that for any o: A” — X,
Gx(s7l'o)=sto+e(0) € (Ra®@s 'C(X)® Ry) ® (R, ® R® Ry),

where e is the map (2.2)). Extending G x to be compatible with compositions, and
using the identification

R.R(s'CXN)XRR, YRR, @R Ry = Ry @ (s 'C(X))®° @ Ry,
we obtain a natural degree 0 linear map
(2.8) Gx : Cobar®(€(X))(a,b) — Cobarll(C(X))(a,b)

for any a,b € X, which is compatible with compositions. A straightforward calcu-
lation shows that Gx is a chain map.

3. CONSTRUCTION OF J (THEOREM [1.2)) AND H (THEOREM |[1.4))

This section establishes the existence of a natural A,.-transformation J extending
{Itx}xeTop, and of an A..-homotopy H between F = Jo A and §. Both J and
H are constructed via the method of acyclic models; the construction of J is more
geometric in nature, whereas the construction of H is more algebraic. At the end
of this section we provide a precise formulation of the statement that J is a left A-
homotopy inverse of A for simply connected spaces, as announced in Remark

We begin by fixing A sign conventions. Our sign conventions for A..-categories
and Aso-functors follow those for A..-algebras and A..-morphisms in [LV12] and
differ from those in [Lef03]. The difference essentially arises from reversing the
order of inserting objects in the multilinear maps, which, together with the Koszul
sign convention for reordering graded objects, leads to a straightforward conversion
rule between the two conventions. Applying this rule to the A .-algebra and A..-
morphism signs in [Lef03] recovers exactly the conventions of [LV12]. Since [LV12]
does not specify signs for A,.-homotopies, we extend this conversion rule to the
Aso-homotopy signs from [Lef03], ensuring all signs remain compatible with [LV12].

For an A, -category C and objects Xj, ..., X, € Ob(C), the structure maps

mf;: HomC(Xo, X1)® - ® HomC(Xn,th) — HomC(Xo, Xn)
are of degree n — 2, satisfying the A..-relations
Z (_1)p+qrm§+1+r o (1*r @ ch ®1%7) =0, Vnx1.
ptg+r=n
For two A.-categories C,C', an A-functor F: C — C’ consists of a map
F: Ob(C) — Ob(C)
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on objects and a collection of degree n — 1 linear maps
F,: Hom®(Xo, X1) @ - -- © Hom®(X,,_1, X,,) — Hom® (F(Xy), F(X,))
for all n > 1 and Xy,..., X, € Ob(C), satisfying that for any n > 1,

Z (_1)p+qup+1+7_(1®p ® mg Q 1®r) _ Z (—l)emg (Fi1 R ® Fik)’
pt+q+r=n - k?rl
1T TIEk=N
where

k
e=> (k—j)(i;—1).
j=1

For two Asc-functors F,F': C — C’ associated with the same object map F', an
Aso-homotopy H: F = F’ consists of a collection of degree n linear maps

H,: Hom® (X, X1) ® - - - ® Hom(X,,_1, X,,) = Hom® (F(Xo), F(X,,))
for all n > 1 and Xy, ..., X, € Ob(C), satisfying that for any n > 1,
F, — FT/L — Z (_1)p+qup+1+T(1®p ® qu ® 1®r)
ptgtr=n
+ Z (—1)67715 (Gi1 ®---®G;,_, ®H;, ®Fiz+1 ®"'®Fik)a
E>I1>1
i1t Fir=n
where

k
S=k—1+Y (k—j)(i;—1).
j=1
Under the above conventions, we focus on dg categories, i.e., A,-categories
where my is the differential, my the composition, and m,, = 0 for all n > 2.

3.1. Proof of Theorem Recall from Section that Ity is the composition
of natural chain maps

cY(PX)(a,0) 2% Totl({CZ(PX(a,b) X ™)}uz0)
T Totll({C(PX (a,5) X ™)}nzo)
(3.1) B Totll ({0 ({a} x X™ x {b}) }nso) 25 Cobarll(C(X))(a, b).

Clearly, AW defines a functor between dg categories, natural in X € Top, where
the composition on

{Totll({C({a} x X" x {B})}nz0)} 4 pex
is induced by the Cartesian product of spaces:
{a} x X™ x {b} x {b} x X" x {c} = {a} x X"+ x {c}.

Hence it suffices to show that Ev,on™ o®, is an A.-functor between dg categories.
This naturally leads one to seek associative compositions on the families

{Totll({CP(PX (a,) x "}uz0)},pex: ATOSIHC(PX (a,0) X ™}uz0)}, pexs

respectively, and to analyze Ev,, 17']7 , and &, separately. The most natural can-
didate for such compositions would be induced by space maps

PX(a,b) x ™ xPX(b,c)x ™ —PX(a,c)x ™17,
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defined by concatenating paths and gluing points in "', ™2 proportionally to their

respective path lengths. However, such maps fail to exist when both paths have
zero length, so the composition is only partially defined.
To settle this issue, we introduce a cosimplicial space

(3.2) [n] — P"X(a,b) = {(V,T,tl, cestn) |
(v.T) € PX(a,b), 0<ty <---<t, <T},

whose cosimplicial structure parallels that of both PX (a,b) x ™ and {a} x X™ x {b};
see also [Wan24, (4.2a), (4.2b)]. The families

{Totll{CP(P" X (a,0)}nz0)}, yexs  {TOtHLH{C(P X (a,0)}nz0)}, e x

both admit associative compositions induced by path concatenation together with
the obvious gluing of marked points, and therefore form the morphism sets of dg
categories. Recognizing [n] — P™X as a cosimplicial analogue of the nerve N(PX)
of PX, we denote the resulting dg categories by

(Tot CZ 0 cN)(PX) and (TotC' ocN)(PX).
There is a family of natural maps
Gn: PX(a,b) x ™ —= P"X(a,b)
(v, Tyty, ... tn) = (v, T, 1T, ..., t,T)
respecting cosimplicial structures, and a family of evaluation maps
evy: P"X(a,b) = {a} x X" x {b}
(v, Tty ...y tn) = (a,y(t1), ..., v(tn),b)

respecting cosimplicial structures and compositions, such that Ev,, = ev, o ¢,.
Thus, we have a commutative diagram of natural chain maps:

q+0Py

CD(PX)(a,b) Tot,H ({CD(P"X(a,b))}nzo)

.| b
(33)  Totll({CP(PX (a,b) X ™)}ns0) Tot!l({C(P"X (a,b))}n>0)
Totll({C(PX (a,b) x ™)}nz0) —— Totll({C({a} x X™ x {b})}ns0),

where ev, defines a functor between dg categories.
Now, Theorem [[.2] reduces to the following lemma.

Lemma 3.1. For any topological space X, the natural chain map
Ix1 =17 0g.o®,
in extends to a natural A..-functor
Ix = {Ixx}tes1: CC(PX) = (TotC ocN)(PX).

Explicitly, there exists, for each k£ > 1 and ag, ..., ar € X, a natural linear map

k

Ixx: Q) CPX)(ai—1,a;) = Tot ({C(P" X (ag, ar)) }nx0)
=0
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of degree k — 1; and the collection {Jx  }r>1 satisfies, for any k > 1,

Dlogy, = Z (=1)* 1 x 0 (187 @ 08 @ 1%7)
p+r=k—1
+ Z DPIx 10 (1% @ p®1%7)
p+r=k—2
+ Z HX i ® HX,j)
i+j=k

where 1 and gl denote the respective compositions.
Once Lemma is proved, Theorem follows by setting
IJx =AW oev,o0Jx.
In preparation for the proof of Lemma for any T' > 0 and integer n > 0, set
no={(ty,... ty) ER"|0<t; < - <t, <T},

which is the standard n-simplex scaled by T'. In particular, § consists of a single
point 0. For any 7' > 0, the assignment [n] — 7 forms a cosimplicial space
analogous to the standard one at T = 1. Indeed, { %}},>0 identifies with the
cosimplicial subspace of {P"{a}(a,a)},>0 consisting of constant marked paths of
length T in the singleton space {a}. The family { %},>0, >0 inherits an associative
composition

or X R R
from {P"{a}(a,a)}n>0, inducing an associative composition
o : Totll({C7( #,)}nz0) © Totll({C7( 3,)}nz0) = Totll({C7( 7, 1m,) bnz0)s

which is a chain map.
The sequence v = {v, € CY( ™)},>0 in Remark identifies with a 0-cycle

5= (Tn)nz0 = ((=1)"vn)nz0 € Totl({C7( ™")}nx0)
such that vy is the fudamental cycle of ©. For any T > 0, denote by
ST " T{w
the scaling map, and define
ET) = (s7)(0) € Totg ({C7( #)}uz0).

Lemma 3.2. There exists a family of chains

k IT O
{00 1w € Tl ((C7C Rppindbuzo) }
with £€°(\g) defined above, satisfying the following two properties:
(1) For any k > 0 and A, ..., \p € [0,00), the chain £€¥(\g | --- | \x) depends
continuously on Ag,...,\x. More precisely, for any k,n > 0, there exists

an integer N(k,n) > 1, and for each 1 <i < N(k,n) a scalar ¢* , € R and
a continuous map

k . 7tk+n k+1 n
Toit L x [0,00)"" — R",
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such that: for any = € I**" and Ao,..., A\x € [0,00), ¥ ;(x, Ao, .., Ak)
lies in % . ., ; and for any Ag,...,Ax € [0,00), the n-component of
E"(No | -+ | A) is given by
N(k,n)
57&0‘0 | | )‘k> = Z C’:L,iTr]:,i( 5 A0, - 'v>‘k)'
i=1
(2) For any k > 0 and Ay, ..., A\x >0,
k—1
(3.4) DHE o [+ [ M) =D (=)' o |-+ [ X4 Xiga [+ | An)
e
FY DTRE N [ [ A o T g | [ )
i=0

Proof. We prove the lemma by induction on k. Once a choice of £€* has been made
for some k, it will remain fixed in all subsequent steps.
First, for k = 0, £°(\g) = (51, )«(?) depends continuously on \g, and satisfies

DI (X)) = (s3,)+(D!7) = 0.
Next, assume the lemma holds for all k¥’ < k with k& > 1, and let
=50 [ | An)

denote the right-hand side of (3.4). By the inductive hypothesis, a straightforward
computation shows that

DI(E* (Ao |- | Ak)) =0,
50 ZF(Xo | -+ | A&) is a cycle.
We now construct a bounding chain of Z¥(\g | --- | Ax) that depends continu-
ously on Ag,...,Ax. For T'= Ay + - - - + A, consider the maps
hn:[0,1] x = Ty (Sy81,...,tn) > (St1,...,8tn), n>0.

These define deformation retractions of 7 onto the point § C 7, compatible

with the cosimplicial structure maps.
Define a linear homotopy operator

H = {H}nzo: Totl({CZ( $)}nz0) = Toth, ((C7( H)}azo)
(zn)nZO — ((hn)*(id[o,l] X I"))nEO'
Then
DIloH + HoDI =id —c,

where ¢ = {c, }n>0 is induced by the contraction maps h,,(-,0). Thus,

DI(HEF o [+ | M) =5 o |-+ [ M) = c(EF Ao |-+ | Aw)).-
It remains to show that

c(E o |- [ Ak)) =05
then H(ZF(\g | -+ | Ax)) gives the desired bounding chain.
Since hy,(+,0) factors through §, we can view each component

ca(En(ho | [ M), n 20,
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of the (k—1)-chain c(Z*(\g | --- | Ax)) as lying in CJ( ) = C(pt), which vanishes
in positive degrees. Since each such component has degree k — 1 + n, it vanishes
automatically if £ > 1 or n > 0; for the exceptional case k = 1 and n = 0, we have

co(Z5(No | A1) = co(€0(ho + A1) — E(ha) 0 £ (A1)

= co((8xg+a1)%(v0)) — co(8x,)(v0) © (81, )«(v0)),

which is the difference of two terms both equal to the fundamental cycle of § = pt,
and is therefore zero. This completes the proof. O
Proof of Lemma[3.d} Fix once and for all the family {€¥(\o | -+ | Ay)}, or equiva-

lently, a collection of scalars and continuous maps

k k . 7k+n k+1 n
{eni € Ry IV x (0,00 — R }kzo,nzo,1§z'gzv(k,n)’

provided by Lemma |3.2
Let £ > 1, and consider points ag,...,ar € X together with singular cubes

oy 1% = PX(a;-1,05), @ (y5(2),Ty(2)), 1<j<k,

where Tj: I% — [0,00) and 7;(x): [0,T;(z)] — X is a path.
For any n > 0 and 1 < i < N(k — 1,n), define a continuous map

i T x oo I3 [R=1E0 PR X (g, ay,)
(xla cee a'rk'7y) — (0'1(561) Koo X O-k'(a:k)a Ts,zl(val(zl)a s aTk('T’k)))

Each Jj ,,; determines a normalized cubical chain on P"X (ao, ax).
We then define, for every k > 1, an R-linear map

I Q) CP(PX)(aj-1,a;) = Totl ({CT(P" X (ag, ar)) }nx0)

1<j<k
N(k—1,n)
Ty (o1 ®- Do) = < Z (_1)(k—1)(d1+...+dk)027i1Jkﬁm_) ,
i=1 n>0

and finally define
Ixk=n" oy,
By construction, {Jx i }r>1 is an As-functor extending Jx 1 = 77':" oq,0®,. O
Remark 3.3. There is a subtlety: the collection {glx,k}kzl is not an As-functor
extending 33{,1 = ¢, 0 ®,, as the A, -functor relations hold only up to switching
cube coordinates in normalized cubical singular chains. To illustrate, consider the
relation between g | and g% 5. For o;: I"" — PX(a;_1,a;), one needs to compare
DI 5 (01 © 02)) + Tx 2(0(01 @ 72))
with
3/)(,1(01 00g) — 3/)@1(01) © 33{,1(02)~
For any n > 0, the CP(P" X (ag, az))-component of I’ 1(01)0d 1(02) is a weighted
sum, over ny +ng =n and 1 <4 < N(0,n), of chains of the form

T4 I x I%2 x ™2 — P" X (ag, az),

(T1,91, T2, y2) — (01(551) % 0(22), 7 (y1, Ta(21)), Tu (1) + Tg,i(yQ’TQ(wQ)))'
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The corresponding part in DH(H’X,2(01 ® 032)) + I 5(0(01 ® 02)) is, however, a
weighted sum of chains of the form

T4 Jd2 5 [ x ™2 P”X(ao,ag),
(71, 22,Y1,Y2) = (Ul(xl) x 03(w2), To i (y1, Ti(x1)), Ta(z1) + Tg,i(yQ’TQ(‘T?)))'

Thus, the two expressions differ by switching the 192 and I™ coordinates, with
signs changing accordingly. This difference vanishes upon passing to normalized
simplicial singular chains, since n™ is defined by a sum over all permutations of
the cube coordinates, each with its signature.

Remark 3.4. By construction, £&¥(X\g | -+ | Ax) = 0 if & > 0 and some \; = 0. For
k=0, we have £2(0) = 0 (n > 0) and &) = id,; € CF( 3) = C§(pt). Consequently,
Jx is a unital A.-functor, in the sense that Jx ; respects identity morphisms and
Jx x (k> 1) vanishes whenever one of its inputs is an identity morphism. It follows
that the Ao.-functors Jx and Fx are also unital.

3.2. Proof of Theorem [1.4l We need the following acyclicity lemma.

Lemma 3.5. For any contractible topological space X and a,b € X, the projection
chain map

pry: Cobarl[(C(X))(a,b) = Ry @ Ry, (24)n>0 — o

is a quasi-isomorphism. Hence, H,(Cobarll(C(X))(a,b)) = R is concentrated in
degree zero.

Proof. This is an easy consequence of [Iril7, Lemma 8.3]. O

Now we begin the proof of Theorem Explicitly, we need to show that there

exists, for any topological space X, k > 1 and ayg, ..., ar € X, a natural linear map
Hxp: Q) Cobar™(C(X))(ai—1,a;) — Cobarll(C(X))(ag, ar),
1<i<k

and the collection {Hx  }r>1 satisfies, for any k > 1,

Fxr—Gxp =Dl oHx, + Z )= lfHXkO(l‘X’p@D&@l@T)
p+r=k—1
(3.5) + > ()P Hx a0 (1% @ u 197
p+r=k—2
+ Z ( o (Hx,i®Fx,y) +pllo (9X,i®9fx,j)),
i+j=k

where 1% and pll denote the respective compositions in Cobar® and Cobarll.
Consider the following statement S(k,d) for integers k > 1 and d > 0:
e S(k,d): For any topological space X and ayg,...,a; € X, the natural linear

maps Hx i can be defined on all tensors

k/
21 @ @ € (X Cobar™(C(X))(ai—1, a;)

i=1

with k' < k and degzy + -+ - + degxys < d, in such a way that (3.5) holds

on these elements.
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Theorem [1.4]is equivalent to the assertion that S(k,d) holds for all k > 1 and d > 0.
First of all, we set H x i to be zero if any of its inputs is a multiple of an identity
morphism; then holds on such inputs by Remark and the fact that Gx
respects identities.
Next, we prove S(k,d) for all k,d by induction on (k,d) in lexicographic order:

(k',d") < (k,d) if either (i) ¥ < k, or (ii) k' =k and d' < d.

For the induction, we denote by 9{% .. the restriction of the (yet to be constructed)
map Jx i to elements of total internal degree < d; similarly, we write ff% , and G4
for the corresponding restrictions of Fx j and Gx. Once defined for a pair (k,d),
the maps i]-(g(’ . are not modified in any subsequent steps.

Fix (k,d) with k > 0 and d > 0, suppose S(k’,d’) holds for all (k',d") < (k,d),
we aim to construct f]{dXJC with the desired properties. (Note that the assumption
for (k,d) = (1,0) is vacuumly true.) It suffices to define

H w21 ® - @ ap)
for all
2; € Ry, , R (s 1C(X)) ¥ R R, n; >0(1<i<k)
with
degxy +---+degxr =d

in a way that is natural in X, and to verify that on such z; ® - - - ® g,

Dlodt% ), =%, —Skn+ Y. (D)FHE, o (1P @ D¥®1%")
p+r=k—1
(3.6) + > ()P HE 0 (1P e M © 197)
p+r=k—2
+ > ( o (35, ®5§f,j)+ﬂno(9dx,i®%§(,j))-
i+j=k

For any ordered k-tuple d of ordered tuples of positive integers, d= (dy,...,dg)
with d; = (di1,...,din;) and d; ; > 0, define its degree by

g

degd —ZZ i

=1 j=1
Let

Lij: d”‘—>\/ \/ divgr = d 1<i<k, 1<j<n
ir=1j=1
be the obvious inclusion maps, where the wedge sum denotes a k-necklace, i.e., it
is formed by successively identifying the last vertex of each simplex with the first
vertex of the next in the order

dl,l \/\/ dl,n,l \/ d2,1 \/\/ dk’,nk.

There is a canonical chain

s,y e @ (e 8 (B e, (B mn,).

=1

where m; = 3!, _, > dir j, and v, denotes the (p + 1)-th vertex of <.
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Now assume deg& = d. Denote by
v € Cobarll(C( ¥))(vo, va)
the chain obtained by applying the right-hand side of (3.6) to ®%_, X7 s
Then we have the following lemma.
Lemma 3.6. There exists a chain 1/13 € Cobarll(C( a))(vo,vd) such that
Dllyd = g,

Proof. One checks by the inductive hypothesis that 7 is a cycle, so it remains to
show that [¥?] = 0 in homology.

Notice that deg¥? = k — 1 + >i;(diy—1). If k> 1 or some d;; > 1, then
deg ¥d > 0, and then by Lemma [\I/‘j} =0.

It remains to consider the case k = 1 and d = d; = (1,...,1). For simplicity,
denote by

Ll ly.oy Lo et

I onto the i-th copy of '. By definition,

the inclusion map sending
ool =F (s iy B Ks ) =G a(s g K- Rs ).
Since Fx, Gx are functorial in homology,
(Ol =T [T vy (571)] =TI [G va (s71)].
Since F =Jo A, for each 1 < i < k, we have
F (s ™) =9 1 1(@) = (i1 - 1r) @ (571 0)®" ® (1r - 1)), 5
where i; € P 1""’1(1)1-_1,111-) denotes the point representing the path ¢;, and (L_l is
the reversal of ¢, i.e. 1;(t) = t;(1—t) for t € [0,1]. Also,
G aa(s ) =vii1-1g-vi+ (vo- 1) ® (s 1) @ (1g - v1).
It follows that
(pro)«([¥11]) = [1g] — [1r] = 0 € Ho( 1)

By Lemma [Wl--1] = 0, and the proof is complete. O

Fix a choice of wa € Cobarll(C( ‘i))(vo, vq) provided by Lemma For any
topological space X, integer £ > 1 and any two-indexed family of simplices

o AT 5 X, 1<i<k, 1<j<n,

such that the image of the last vertex of each simplex coincides with the image of
the first vertex of the next one, we denote by

k ng

(3.7) g=\/\ o2l x

i=1j=1
the resulting map, which we call a k-necklace in X. Then, we define
Hp(@F) KL, 57003 ) = G (9Y).

Clearly 3% is natural in X, and by a routine computation using the inductive
hypothesis, equation (3.6]) holds. This completes the proof of Theorem ([
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3.3. Elaboration on Remark For any topological space X with a basepoint
b € X, recall that C1(X,b) C C(X) denotes the dg subcoalgebra generated by
1-reduced simplices at b, i.e., simplices whose edges all map to b. Define the cate-
gorical subcoalgebra C!(X,b) C €(X) by setting €1(X,b) = C*(X,b) as R-modules
and 8§(C(X,b)) = {b}. It is straightforward to check that C*(X,b) is a categorical
coalgebra with strict differential and zero curvature, hence a usual dg coalgebra,
and that the linear isomorphism

CH(X,b) = CH(X,b)

is an isomorphism of coalgebras in the usual sense.

Let us now examine the restriction of the A,.-functor Fx and the functor Gx to
the dg subcategory Cobar™(C1(X, b)) of Cobar®(€(X)). We denote these restrictions
by Fx|e1 and Gx|e1, respectively.

First, we claim that if u, € C,,( ™) is chosen as u,, = id » for all n > 0 in the
construction of Jy, then

Fx|er: Cobar®(C(X, b)) — Cobarll(C(X))
factors through the inclusion of dg categories
Cobarll(C (X, b)) c Cobarll(C(X)).

It suffices to check that for any k& > 1, l-reduced simplices o,,: % — X

(1<m<k),n>0,1<j<nand1<i<N(k—1,n), the restriction of the map
R A .
(X1, Ty y) =
evi i (Ax(o1) (@) % -+ % AX(Uk)(a:k),Tff;l(y, Ti(x1), ..., Te(zy)))

to any edge of the domain cube is the constant map to b. Here,
evp,j: P"X(b,0) = X

is the evaluation map at the j-th marked point, and 7':671 is constructed in Lemma

1,1
This can be checked as follows. There are two types of edges:

o A vertexin IT 71 x ... x J%~! with an edge in I*~1*". By the definition of
Adams’ map, such an edge corresponds to the concatenation of some edges
of the 1-reduced simplices o1, ..., 0, hence is mapped to b.

e An edge in 191 x ... x I%~! with a vertex in I*~!*". By the choice of
u,, and the explicit inductive construction of £¥~! in Lemma the point
Tf;l(y, Ty,...,Ty) € Ty4aT, 18 @ vertex of the scaled simplex Tyt
whenever y € I*~1" is a vertex. Therefore such an edge is mapped to one
of the endpoints of Ax (o1)(x1) *- - * Ax(0ok)(xk), namely the basepoint b.

Hence the claim follows.
Next, observe that the map vanishes on C1(X,b), so

Gx|er: Cobar®(€'(X,b)) — Cobarll(C(X))
is simply given by the inclusion induced from

CLHX,b) = CH(X,b) — CH(X,b) — C(X)
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and the inclusion of a direct sum into a direct product. Moreover, since s~1C1(X, b)
is concentrated in positive degrees,

Pr @ (s ICUXB)*" @Ry = [[ Ry ® (s CT(X,1)*" ® Ry,
n=0 n=0

Hence Gx identifies Cobarx(el(X, b)) = Cobar(C'(X,b)) with the conormalization
of Cobarll(C1(X, b)), viewed as a subcategory of Cobarl[(C(X)).
Now assume X is simply connected. By the results in Section [d] the inclusion
Cobar®(C' (X, b)) < Cobar®(€(X))
is a quasi-equivalence. By comparing spectral sequences, the inclusion
Cobarl [(C (X, b)) — Cobarll(C(X))
is also a quasi-equivalence. The discussion above is summarized as follows.
Proposition 3.7. For any simply connected topological space X, the A,.-functor
Ix: CP(PX) — Cobarll(C(X))
acts as a left A,,-homotopy inverse of the functor
Ax: Cobar®(€(X)) — CP(PX)

on the common subcategory Cobarlg(@1 (X,b)). More precisely, the inclusions of this
subcategory into Cobar®(€(X)) and Cobarl[(C(X)) are both quasi-equivalences,
and the restriction of the composition Jx oA x to this subcategory is As.-homotopic
to the conormalization inclusion Cobar®(€!(X, b)) — Cobarll(C1(X,b)).

Remark 3.8. One could alternatively define CobarH(C) by additionally mod-
ding out the ideal generated by Cj. On Cobarll(C1(X,b)), this quotient is natu-
rally isomorphic to the conormalization, so in the alternative definition, the map
Cobar®(€1(X, b)) < Cobarll(C(X, b)) is the identity.

4. ADAMS’ MAP AND THE UNIVERSAL COVER

In this section, we give an elementary proof of Theorem [I.8]and Corollary [T.9 by
passing to the universal cover and using Adams’ classical cobar theorem for simply
connected spaces. This section is essentially self-contained and does not use any
of the results proved earlier. Corollary was originally proved in [RZ18| using
different methods.

Let X be a topological space. We may assume X is path-connected; otherwise
we argue separately on each path-connected component of X. Fix once and for all,
for each pair (a,b) € X x X with a # b, a unit-length path

Yab : [Oa 1] — X7 Vab(o) = a, ryab(l) = b7

and require that vpq () = Yas(1 — ¢) for all a,b € X with a # b and ¢ € [0,1]. For
each b € X, we also define a zero-length path

Yob - [0, O] — X, ’Ybb(o) =b.
Denote the resulting family of paths by
(4.1) Ox = {Vab}abex-
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For any two a,b € X, there is a homotopy equivalence
L’Yab : PX(bv b) — PX(aa b)v Y > Yab ¥,
with homotopy inverse L., : ¥+ Ypq * 7. Similarly, for a # b, define an R-linear
map

L% : Cobar™(€(X))(b,b) — Cobar™(C(X))(a,b), =+ (s 'ya) Kz,

where v, is regarded as a 1-simplex in X. Then L%b is a chain-homotopy equiva-
lence with chain-homotopy inverse L?ba 2’ (s 1ypq) ®2’, and a chain homotopy
from the identity to L%a o Lfib is given by z + (s710) K 2, where o = [vg, vy, V2]
has edges [vo, V1] = Vpa, [V1, V2] = Yab, and [vg, v2] is the degenerate edge given by

the constant path at b. We also include the case a = b by setting L,%b =id.
Clearly the maps L., and L?ab are compatible with Adams’ map. More pre-

cisely, there is a commutative diagram
Cobar®(C(X))(b,b) —25 CB(PX)(b, b)
(4.2) %Lﬁb :l@m)*
Cobar®(C(X))(a,b) -2 CP(PX)(a,b).

The diagram (4.2)) implies that Theorem is equivalent to the following propo-
sition, whose proof is postponed to the end of this section.

Proposition 4.1. For any pointed path-connected space (X, b),
Ax : Cobar®(C(X))(b,b) — CP(PX)(b,b)
is a quasi-isomorphism.

For any b € X, consider the dg subcoalgebra CY(X,b) of C'(X) generated by
simplices with all vertices at b. Let C°(X,b) be the categorical subcoalgebra of
C(X) with €°(X,b) = CY(X,b) as R-modules and $(C°(X,b)) = {b}.

Define an R-linear map

E_:s7'C%(X,b) — (R, W s '€(X,b) K Ry) & Ry,
slor— s7lo —e(0), o: (A", vertices) — (X, b),
where e is (2.2)). Extend E_ multiplicatively over X. This induces a linear map
E_: Cobar(C°(X,b)) — Cobar™(C°(X,b)),

which is a chain map by straightforward calculation. Moreover, E_ is a dg algebra
isomorphism, whose inverse E, is given by s1o + s71o + e(o) on generators.
Denote by
w: CY(X,b) — C(X)
the natural inclusion. Using the family Ox , one can deform each simplex in
X to one with all vertices at b, proceeding by induction on the dimension of the
simplex. This procedure induces a morphism of categorical coalgebras

fox: C(X) — CX,b)

satisfying fo oy = ideo(x ), as well as an R-linear map Ho : Co(X) — Coy1(X)
serving as a homotopy between ide(x) and the morphism ¢, o fo,. Consequently,
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Cobar&(fox) o Cobar®(s,) is the identity on Cobar®(€°(X,b))(b,b), and the exten-
sion of Ho, to a derivation, He , : Cobar®(C(X))(b,b) — Cobar®(€(X))(b,b), is a
chain homotopy between the identity and Cobar‘g(ab) o Cobarg(fox). Therefore,
the natural inclusion

Cobar®(1;): Cobar®(€%(X, b)) — Cobar®(€(X))(b,b)
is a chain-homotopy equivalence.

Clearly the maps E_ and Cobar'z(Lb) are compatible with Adams’ map, i.e., there
is a commutative diagram

(4.3)
Cobar(C?(X, b)) —— Cobar®(€°(X, b))(b,b) (B Copar®(E(X)) (b, b)

m lAX %

CE(PX)(b,b).

The diagram implies that Corollary is equivalent to Proposition

Remark 4.2. Adams’ original proof [Ada56] shows that
Ax : Cobar(C*(X,b)) — CP(PX)(b,b)
is a quasi-isomorphism if X is simply connected. Note that the natural inclusion
Cobar(C*(X, b)) — Cobar(C°(X, b))
is compatible with Adams’ map, and is a quasi-isomorphism provided that X is
simply connected. Consequently, by ,
Ax : Cobar®(C(X))(a,b) — CZ(PX)(a,b)

is a quasi-isomorphism for all a,b € X whenever X is simply connected.

Proof of Proposition[{.1 For any b € X, denote by X, the universal cover of X at
b and denote by B
Tp - (Xb7 [Cb]) — (X, b)
be the universal covering map, where [¢;] denotes the homotopy class of the constant
path ¢y: [0,1] — X at b.
First, by lifting paths in X to )Z'b, we obtain a homeomorphism of spaces
PX(b,b) = |_| PXy([cs], ),
a€m(X,b)
which induces an isomorphism of chain complexes

() cPePx)en=c?( || PR(ala)= @ CPI)(ala).

aem (X,b) aem (X,b)

Next, by lifting necklaces in X to )?b, we obtain a chain complex isomorphism

(4.5) Cobar™(€(X))(b,b) = @)  Cobar™(€(X,))([cs], ).
a€m(X,b)
More precisely, recall that % V...V 9 is the wedge sum of 4 ,..., % formed

by successively identifying the last vertex of each simplex with the first vertex of
the next. Every necklace in X

o ( diy...y d’“,vo,vd) — (X, b,b)
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uniquely lifts to a necklace in )?b

G (Vv B ug vg) = (X, [e], 7 (D))

such that m, 00 = o, where d = dy + - - - +dj, and v; denotes the (i + 1)-th vertex of

diy...v 4 The endpoint o (vg) is uniquely determined by the based homotopy
class of o o~ for an arbitrary path v in diy ... v 9k from vy to vg. Conversely,
every necklace in X, arises as the lift of a unique necklace in X. Thus, for each
k > 0 there is an R-module isomorphism

RE(sCX)RR 2 P R (s '€(X,)" KR,
aem (X,b)

and taken together, these induce the isomorphism (4.5]).
By Remark for any o € m (X, ),

Ag, : Cobar™(€(X,))([cb], @) = CP(PX,)([es], )

is a quasi-isomorphism. The proof of the proposition is then completed by observing
that the isomorphisms (4.4) and (4.5)) are compatible with Adams’ map. O

5. EXTENSION OF THE RESULTS TO ARBITRARY SPACES

In this section we give the constructions of CP(X), Ity, :’va, g"X, §X, and Hyx
for any topological space X, thereby proving Theorem The constructions of
CP(X) and It x are the key ingredients; once these are established, the remaining
results follow by arguments parallel to those used for Theorem [.2]and Theorem

We define the dg category CP(X) as follows. The objects are the points of X.
For any a,b € X, the morphism complex is

CP(X)(aab) = @ CobarH(C()?a))([ca],/B),

BEIL; X (a,b)
where II; X denotes the fundamental groupoid of X, ()?a, [ca]) is the universal
covering space of (X,a), and 8 € II; X(a,b) is viewed as a point of X, via the
canonical inclusion

X(a,b) = | J MX(a,c) = Xa.
ceX

The composition of morphisms is induced by the map

(Rie) ® (s71C(X0))®" @ Rg) @ (Rie,) @ (s C(Xp))®™ ® R,)
— Rie,) @ (s7'C(X,))®"" @ Rpor
(lp@r®1g)@(lpRY®1R) = 1R @ (z® B.(y)) ® 1g

for any a,b,c € X, g € 111 X(a,b) and v € 111 X (b, ¢), where (3, is the map on the
tensor factors of singular chains induced by the homeomorphism Xy — Xq, z +— Bz.
For any a,b € X, define Itx to be the comoposition of chain maps

(5.1) COPX)(a,b)= P  CP(PXL)([c],B) = CP(X)(a,b),
BEIl X (a,b)

where the first map is defined in the same manner as (4.4)), and the second map is
induced by Itg in (2.3) on each direct summand.
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Remark 5.1. The construction of CP(X) and Itx is motivated by an idea of Irie.
Irie proposed a chain model for the free loop space (path space) and a version
of the iterated integral map based on “de Rham chains” as a simplification of
his construction in [Iri17], which was established by the second-named author in
[Wan23, Chapter 2]. This approach, unlike CP, uses the fundamental groupoid
without referring to universal covering spaces.

We extend INtX to an As.-functor
/ij = {ix’k}kzy CD(PX) — CP(X)
with 5X’1 = Itx as follows. Recall the cosimplicial space [n] — P"X(a,b) in (3.2)
for a,b € X. There is a sequence of canonical isomorphisms of chain complexes
CP"X(a,0) = O C(P"Xu(lcal, ), n=>0
BET; X (a,b)
which is compatible with the cosimplicial structures, and induces an inclusion
P Tt ({C(P"Xa([ca]. B)) }nz0) — Totl ({C(P" X (a,))}n>0).
BET; X (a,b)

For every k > 1, the linear map Jx ; from Lemma factors through the above
inclusion with ag = a, ar = b. Then we define
k
Tx 1 = AW 0 €v, 0 Jx 1.: ®CD(PX)(GF1,@¢) — CP(X) (a0, ar),

where the maps ev.,, AW are induced, on each direct summand, by
ev.: Totl I ({C(P" X ([eals 8) }nz0) = Totll({C({[ea]} x (Xa)™ X {8} }nz0)
and AW : Tot! ({C({[ca]} X (Xa)" X {B})}nz0) — Cobarl(C(X,))([cal, B)

as appearing in (3.3)) and (3.1), respectively.
We define the functor
Gx: Cobar®(C(X)) — CP(X)
as follows. It acts as the identity on objects, and for a,b € X its action on mor-
phisms is given by the composition of chain maps

Cobar™(C(X))(a,b) = P  Cobar™(€(X,))([cal, B) — C7(X),
BEeIl X (a,b)

where the first map is defined in the same manner as (4.5)), and the second map is
induced by G in (2.8) on each direct summand.

We construct an A,,-homotopy ‘JTCX between :}X = EX oAx and §X as follows.
For any k£ > 1 and any k-necklace in X
G: 45X, whered=(di,....dy), di = (di1,...,din,),
as in (3.7), & uniquely lifts to a k-necklace in )N(ty(vo)

G: (%) = (Xé (o), [Co(u0)])

such that mg(y,) © = &, where vy denotes the first vertex of 4. Then we define

Hx (@, KL, 57 oy ) = G.(4?)
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where 1/)‘2 € Cobarll (C( E))(UNO, vq) is provided in Lemma
By construction, Jx, Fx, Gx, and Hx are natural in X. Theorem follows.

Remark 5.2. There is a natural transformation
m: CP = Cobarll o C
such that for any topological space X, mx is the identity on objects, and
7x: C°(X)(a,b) = Cobarll(C(X))(a,b), a,be X

is induced by the universal covering map m,: (Xg,[ca]) — (X,a) on each direct
summand. It is straightfcgwarﬁ to check that Jx, Fx, Gx and Hx are the com-
positions of mx with Jx, Fx, Gx and Hx, respectively. If X is simply connected,
then 7x is an isomorphism of dg categories.

It seems hard to formulate an analogue of Remark in the context here.
Nonetheless, the following is true.

Proposition 5.3. For any topological space X, the functor § x is a quasi-equivalence.

Proof. We know from Section that §x is a quasi-equivalence for simply con-
nected X. The lemma follows by applying this to X, in the construction of §Gx. [

Theorem [1.10] and Proposition [5.3] imply that:

Corollary 5.4. For any topological space X:
(1) The functor
Ax : Cobar®(C(X)) — CP(PX)
induced by Adams’ map is a quasi-equivalence if and only if the A,,-functor
Ix: CU(PX) - CP(X)
motivated by Chen’s iterated integral map is an Aoc-quasi-equivalence.
(2) (Given Theorem The A-functor Jx is an A-quasi-equivalence.
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