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Abstract. We construct a many-object dual version of Chen’s iterated in-

tegral map. For any topological space X, the construction takes the form of
an A∞-functor between two dg categories whose objects are the points of X:

the domain has as morphisms the singular (cubical) chains on the space of

(Moore) paths in X and the codomain has morphisms arising by totalizing a
cosimplicial chain complex determined by the dg coalgebra of singular (sim-

plicial) chains in X. When X is simply connected, we show this construction

defines a homotopy inverse to a classical map of Adams, which sends ordered
sequences of singular simplices in X linked by shared vertices to cubes of paths

in X. When X is not necessarily simply connected, following an idea of Irie, we

incorporate the fundamental groupoid of X into the construction and deduce
analogous results. Along the way, we provide an elementary and new proof of

the fact that the (direct-sum) cobar construction of the chains in X, suitably
interpreted, models the dg category of paths in X, an extension of Adams’s

cobar theorem established by Rivera-Zeinalian using different methods.

1. Introduction

Denote by
P : Top → CatTop

the functor that associates to any topological space1 X the topologically enriched
category PX defined as follows. The objects of PX are the points of X and, for
any two a, b ∈ X, the morphism space PX(a, b) is the set of all pairs (γ, T ), where
T ∈ R≥0 and γ : [0, T ] → X is a continuous path with γ(0) = a and γ(T ) = b,
equipped with the compact-open topology. The composition rule on PX is defined
by concatenating paths and adding the corresponding parameters. The identity
morphism at an object b ∈ X is given by the constant path γ : {0} = [0, 0] → X,
γ(0) = b. The topological monoid PX(b, b) is the space ΩbX of Moore loops in X
based at b.

For a fixed commutative ring with unit R, denote by

C□ : CatTop → dgCatR

the functor that associates to any topologically enriched category the differential
graded (dg) R-category obtained by applying the normalized cubical singular chains
with coefficients in R at the level of spaces of morphisms. Similarly, denote by C∆

the functor that applies normalized simplicial singular chains instead. The main
purpose of this article is to compare the functor

(1.1) C□ ◦ P : Top → dgCatR

1Throughout this paper, topological spaces are always assumed to be locally path-connected
and semilocally simply connected.
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and the following different versions of the cobar construction.

(1) The classical cobar construction. This is a functor

Cobar : dgCoalgR → dgAlgR

which takes a dg coaugmented (coassociative) R-coalgebra C as input and
produces a dg augmented (associative) R-algebra Cobar(C). The underlying
graded algebra of Cobar(C) is the free algebra T (s−1C) =

⊕∞
n=0(s

−1C)⊗n

where C is the cokernel of the coaugmentation of C and s−1 denotes the shift
functor, i.e., (s−1C)i = Ci+1. The differential of Cobar(C) is induced by the
sum ∂ + ∆, where ∂ : C → C is the differential of C and ∆: C → C ⊗ C is
the coassociative coproduct of C. The functor Cobar is a left adjoint with right
adjoint being the classical bar construction Bar. The main example we apply
this construction to is the dg coaugmented coalgebra of singular chains on a
pointed space (X, b).

(2) (See [Riv24; HL22]). A “many object” version of the cobar construction. This
is a functor

Cobar⊠ : cCoalgR → dgCatR

that takes a categorical R-coalgebra C to a dg category Cobar⊠(C). Three
features of a categorical coalgebra C are (i) C is a non-negatively graded R-
coalgebra such that C0 = R[S] for some set S, (ii) the “differential” ∂ on C does
not square to zero but its failure is controlled by a “curvature” term, and (iii)

C has a compatible C0-bicomodule structure. The set of objects in Cobar⊠(C)

is S. For a, b ∈ S, the definition of Cobar⊠(C)(a, b) is recalled in section 2.1;
here we just point that the generators are ordered sequences of elements of C
“connecting” a and b (expressed as monomials over the cotensor product ⊠
over C0) and the differential on Cobar⊠(C)(a, b) is induced by ∂ +∆+ h where
h is the curvature of C. A natural example of a categorical coalgebra may be
obtained for any topological space X with S being the underlying set of X by
slightly modifying the dg coalgebra of singular chains on X giving a functor

C∆ : Top → cCoalgR.

For simplicity, we write C∆(X) as C(X).
(3) A cosimplicial totalized “many-object” version of the cobar construction. This

is a functor
Cobar

∏
: dgCoalgobjR → dgCatR

where the input is a dg R-coalgebra C such that C0 = R[S] for some set of

cycles S, which we call “objects”. The set of objects in Cobar
∏
(C) is S, and for

a, b ∈ S, Cobar
∏
(C)(a, b) is defined as the totalization of certain cosimplicial

chain complex defined by the coalgebra structure of C (and hence the direct
product symbol in the notation); see Section 2.1 for more details. An example
of such a C is obtained from a topological space X with S being the underlying
set of X and C being the dg coalgebra of singular chains on X; this gives a
functor

C∆ : Top → dgCoalgobjR ,

and, for simplicity, we may write C∆(X) as C(X).

The “many object” versions (2)(3) of the cobar construction lead to functors

Cobar⊠ ◦ C∆ : Top → dgCatR,(1.2)
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Cobar
∏

◦ C∆ : Top → dgCatR.(1.3)

In this article, we establish an explicit relationship between the functors (1.1), (1.2),
and (1.3).

First, a classical construction of Adams’ gives a natural transformation

A : Cobar⊠ ◦ C∆ ⇒ C□ ◦ P.

The idea behind the construction of A is to associate to any ordered sequence of
simplices in X linked by a shared vertex (a “necklace” in X) a suitable cube of
paths connecting the first and last vertices in the sequence.

Remark 1.1. Adams [Ada56] originally worked with Cobar(C1(X, b)), where b ∈ X
is a base point and C1(X, b) is the dg coaugmented coalgebra of 1-reduced singular

chains on (X, b). This construction naturally extends to Cobar⊠(C∆(X)).

Next, for any topological space X, a variation (or “pre-dual” version) of Chen’s
iterated integral map gives natural chain maps

(1.4) ItX : C□(PX)(a, b) → Cobar
∏
(C(X))(a, b),

for all a, b ∈ X, induced by evaluating each path in PX(a, b) at all ordered sequences
of n marked points (which are determined by points in the n-simplex), for all n ≥ 0;
see Section 2.2.2 for more details.

The maps 1.4 all together do not define a (strict) functor of dg categories

C□(PX) → Cobar
∏
(C(X)) since compositions are not preserved. However, we

have the following statement, which is the first main result of this article.

Theorem 1.2. The natural maps in (1.4) can be extended to a natural A∞-
transformation

I = {In}n≥1 : C□ ◦ P ⇒ Cobar
∏

◦ C∆,

in the sense that for any topological space X,

IX = {IX,n}n≥1 : C□(PX) → Cobar
∏
(C(X))

is an A∞-functor with IX,1 = ItX , and the family {IX}X∈Top is natural in X.

Remark 1.3. Chen [Che73] originally worked with cochains (differential forms)
on what he called differentiable spaces, which generalize smooth manifolds. In con-
trast, we work with singular chains on topological spaces, leading to the map I1
which is formally dual to Chen’s. The higher components In (n > 1) can be viewed
geometrically as arising from subdivisions of simplices compatible with path con-
catenation. These higher homotopies disappear after pairing with differential forms
via integration and are therefore not seen in Chen’s framework (see Remark 2.4 and
the subsequent discussion for details).

A natural transformation between two functors Top → dgCatR is a natural A∞-
transformation with vanishing higher components. Hence, given the natural A∞-
transformations A and I, their composition I ◦A is a natural A∞-transformation

F = {Fn}n≥1 = {In ◦A}n≥1 : Cobar⊠ ◦ C∆ ⇒ Cobar
∏

◦ C∆.

On the other hand, there is a straightforwardly defined natural transformation

G : Cobar⊠ ◦ C∆ ⇒ Cobar
∏

◦ C∆
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that, roughly speaking, is induced by the inclusion of a direct sum into a direct
product (modulo the subtle difference between C∆ and C∆). The following is the
second main result of the present article.

Theorem 1.4. The natural A∞-transformations F and G are A∞-homotopic, i.e.,
for any topological space X, there exists a natural A∞-homotopy HX between the
A∞-functors FX and GX .

Remark 1.5. Suppose X is simply connected, and fix a basepoint b ∈ X. If
one restricts to the dg coalgebra of 1-reduced singular chains C1(X, b), then GX

identifies Cobar⊠ with the conormalization of Cobar
∏
. Thus, Theorem 1.4 implies:

Chen’s iterated integral map, suitably extended and reinterpreted, is
a left A∞-homotopy inverse of Adams’ map for simply connected
topological spaces.

See Section 3.3 for a more detailed statement.

Recall that a functor C1 → C2 between dg categories is called a quasi-equivalence
if it induces quasi-isomorphisms on all morphism complexes and an equivalence
H0(C1) ≃ H0(C2). The same notion applies to A∞-categories and A∞-functors,
where it is called an A∞-quasi-equivalence. Building on Remark 1.5, we then obtain:

Corollary 1.6. For any simply connected topological space X, the functor

AX : Cobar⊠(C(X)) → C□(PX)

induced by Adams’ map is a quasi-equivalence if and only if the A∞-functor

IX : C□(PX) → Cobar
∏
(C(X))

motivated by Chen’s iterated integral map is an A∞-quasi-equivalence.

Recall that Adams [Ada56] constructed the map Cobar(C1(X, b)) → C□(ΩbX)
and proved it is a quasi-isomorphism for simply connected X by comparing the
Serre spectral sequences associated with the path fibration. Chen [Che73] proved
that his original iterated integral map, which takes an ordered sequence of differ-
ential forms on a manifold M as input and produces a cochain in ΩbM as output,
is a quasi-isomorphism for simply connected M by pairing with Adams’ cobar con-
struction and using spectral sequence arguments. Thus, Corollary 1.6 highlights the
structural feature underlying Chen’s proof and provides a conceptual explanation
for why that argument works.

An adaptation of Adams’ original argument yields that, for any simply connected

space X, the dg functor AX : Cobar⊠(C(X)) → C□(PX) is a quasi equivalence (in
fact, we prove a stronger statement in this article, see Theorem 1.8 below). Together
with Corollary 1.6, this immediately implies the following.

Corollary 1.7. If X is simply connected, the A∞-functor

IX : C□(PX) → Cobar
∏
(C(X))

is an A∞-quasi-equivalence.

A natural question is whether Corollaries 1.6 and 1.7 extend to possibly non-
simply connected spaces. One may begin to address this by examining whether
Adams’ map and Chen’s iterated integral map remain quasi-isomorphisms when
X is not simply connected. In recent years, Adams’ theorem has been shown to
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extend to arbitrary topological spaces [RZ18]. In fact, it turns out that AX is
a quasi-equivalence even when X is a non-simply connected space. We give an
elementary proof (independent of all the above results) of this extension of Adams’
theorem by lifting necklaces to the universal cover and using Adams’ original proof
for simply connected spaces.

Theorem 1.8. For any topological space X, the functor

AX : Cobar⊠(C(X)) → C□(PX)

is a quasi-equivalence of dg categories.

Corollary 1.9 ([RZ18; Riv22]). For any pointed topological space (X, b), Adams’
map

Cobar(C0(X, b)) → C□(ΩbX)

is a quasi-isomorphism of dg algebras.

In contrast, Chen’s iterated integral map is not a quasi-isomorphism unless ad-
ditional assumptions are imposed on the fundamental group. Similarly, the map
IX is generally not a quasi-equivalence for an arbitrary topological space X. To
address this issue in the non-simply connected case, it is necessary to modify the

functor Cobar
∏

◦ C∆ and, accordingly, the natural A∞-transformation I. To this
end, we incorporate the fundamental groupoid into the construction, following an

idea of Irie [Iri17; Wan23]. The modification of Cobar
∏

◦ C∆ defines a functor

CP : Top → dgCatR,

and there are natural chain maps

ĨtX : C□(PX)(a, b) → CP(X)(a, b), X ∈ Top, a, b ∈ X

induced by evaluation maps on path spaces. There is also a natural transformation

G̃ : Cobar⊠ ◦ C∆ ⇒ CP

defined analogously to G. If X is simply connected, then CP(X), ĨtX , and G̃X

coincide with Cobar
∏
(C(X)), ItX , and GX , respectively.

We prove the following analogue of Theorem 1.2 and Theorem 1.4 as the fourth
main result of this article.

Theorem 1.10. The collection of natural chain maps {ĨtX}X∈Top extends to a
natural A∞-transformation

Ĩ : C□ ◦ P ⇒ CP.

Moreover, there exists anA∞-homotopy H̃ between the naturalA∞-transformations

F̃ = Ĩ ◦A and G̃ : Cobar⊠ ◦ C∆ ⇒ CP.

For any topological space X, an analogue of Corollary 1.6 holds where FX , GX ,

and IX are replaced by F̃X , G̃X , and ĨX , respectively. Together with Theorem 1.8,

this shows that ĨX is a quasi-equivalence for any topological space X. In this

sense, ĨX provides a formal and “correct” extension of Chen’s iterated integral map,
guaranteeing its quasi-equivalence property beyond the simply connected case. See
Section 5 for further details.
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2. Main Constructions

In this section, we give further details on the cobar constructions Cobar⊠, Cobar
∏
,

the natural transformations A, G and the natural maps {ItX}X∈Top introduced in
Section 1.

2.1. Different versions of the cobar construction. In this subsection, we give
more details on the non-classical versions of the cobar construction.

2.1.1. The “many object” version (2). Given a set S, denote by R[S] the cocom-
mutative counital coalgebra given by the free R-module on S equipped with the
coproduct determined by b 7→ b ⊗ b for all b ∈ S. We shall define a version of
the cobar construction which takes as an input the following notion introduced in
[Riv24].

A categorical R-coalgebra consists of a tuple (C, ∂,∆, h) where

(1) (C,∆) is a non-negatively graded coassociative counital coalgebra that is
flat as an R-module

(2) ∂ : C → C is a degree −1 coderivation of the coproduct ∆
(3) h : C → R is a linear map of degree −2 satisfying h ◦ ∂ = 0 and

∂2 = (h⊗ id− id⊗ h) ◦∆,

i.e. h is a curvature for (C, ∂,∆)
(4) The set

S(C) = {x ∈ C : ∆(x) = x⊗ x and ε(x) = 1},

where ε : C → R denotes the counit, is non-empty and the natural inclusion
map S(C) ↪→ C0 induces an isomorphism of coalgebras

R[S(C)] ∼= C0.

(5) The natural projection ϵ : C → C0 satisfies ϵ ◦ ∂ = 0

Any categorical coalgebra (C, ∂,∆, h) has a natural C0-bicomodule structure with
structure maps given by

ρr : C
∆−→ C⊗ C

id⊗ϵ−−−→ C⊗ C0

and

ρl : C
∆−→ C⊗ C

ϵ⊗id−−−→ C0 ⊗ C.

Categorical coalgebras form a category with the following notion of morphism.
A morphism from (C, ∂,∆, h) to (C′, ∂′,∆′, h′) consists of a pair f = (f0, f1) where

(1) f0 : (C,∆) → (C′,∆′) is a morphism of graded coalgebras
(2) f1 : C → C′0 is a C′0-bicomodule map of degree −1
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satisfying

f0 ◦ ∂ = ∂′ ◦ f0 + (f1 ⊗ f0) ◦ (∆−∆op) and

h′ ◦ f0 = h+ f1 ◦ ∂ + (f1 ⊗ f1) ◦∆,

where f1 = ε′ ◦ f1 and ε′ is the counit of C′. The composition of two morphisms is
defined by

(2.1) (g0, g1) ◦ (f0, f1) = (g0 ◦ f0, g1 ◦ f0 + g0 ◦ f1).
We denote by cCoalgR the category of categorical coalgebras.

Given a categorical coalgebra C, the dg category Cobar⊠(C) is defined as follows.
The objects are the elements of S. Denote by ⊠ the cotensor product over C0 and
by s−1 the degree shift functor by −1. For any two a, b ∈ S we define

Cobar⊠(C)(a, b) =
∞⊕

n=0

Ra ⊠ (s−1C)⊠n ⊠Rb,

where, for any a ∈ S, Ra is R equipped with the R[S]-bicomodule determined by

the inclusion {a} ↪→ S, C =
⊕∞

i=1 Ci, and (s−1C)⊠0 = C0. The identity morphism
at a ∈ S corresponds to the unit of R through the following identification

1R ∈ R ∼= Ra
∼= Ra ⊠ (s−1C)⊠0 ⊠Ra ⊆ Cobar⊠(C)(a, a)0.

Each differential
D⊠ : Cobar⊠(C)(a, b) → Cobar⊠(C)(a, b)

is induced by the sum ∂ + ∆ + h. The fact D⊠ ◦ D⊠ = 0 then follows from the
compatibility of ∂ and ∆, the coassociativity of ∆, and the curvature equation
relating h, ∂, and ∆. The composition of morphisms is given by concatenation of
monomials. This construction gives rise to a functor

Cobar⊠ : cCoalgR → dgCatR.

The normalized singular chains on a topological space may be regarded as a cat-
egorical coalgebra as we now explain. Recall that the classical normalized singular
chains functor

C• : Top → dgCoalgR
assigns to a space X a dg coalgebra (C•(X), ∂,∆) with coproduct ∆ given by the
Alexander-Whitney diagonal approximation. This does not define a categorical
coalgebra with curvature 0 since, in general, ϵ ◦ ∂ ̸= 0, where ϵ : C•(X) → C0(X) is
the canonical projection map. However, one may proceed as follows. Let

(2.2) e : C•(X) → R

be the 1-cochain induced by sending non-degenerate singular 1-simplices to 1R and
everything else to 0. Define a degree −1 linear map

∂̃ : C•(X) → C•−1(X)

and a degree −2 linear map
h : C•(X) → R

by

∂̃ = ∂ − (id⊗ e− e⊗ id) ◦∆
and

h = (e⊗ e) ◦∆+ e ◦ ∂,
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respectively. A straightforward check yields that C(X) = (C•(X), ∂̃,∆, h) defines
a categorical coalgebra. Furthermore, this construction defines a functor

C : Top → cCoalgR.

2.1.2. The totalized cosimplicial version (3). For any dg R-coalgebra C such that

C0 = R[S], the dg category Cobar
∏
(C) is defined as follows. The set of objects is

S, and for any a, b ∈ S,

Cobar
∏
(C)(a, b) =

∞∏
n=0

Ra ⊗ (s−1C)⊗n ⊗Rb.

Each differential

D
∏
: Cobar

∏
(C)(a, b) → Cobar

∏
(C)(a, b)

is induced by the sum ∂+∆. The composition of morphisms is given by concatena-

tion of monomials. The chain complex Cobar
∏
(C)(a, b) may also be described as the

totalization of a cosimplicial chain complex as follows. Recall that for a cosimplicial
chain complex [n] 7→ (C(n), ∂), its totalization has underlying R-module

Tot
∏
• ({C(n)}n≥0) =

∞∏
n=0

C(n)•+n

and differential

D
∏

= ∂ + δ,

where δ is a signed sum of the coface maps; see, e.g., [Wan24, (2.4)]. Now, consider

C(n) = C(n; a, b) = Ra ⊗ C⊗n ⊗Rb

with coface maps

δi : Ra ⊗ C⊗n−1 ⊗Rb → Ra ⊗ C⊗n ⊗Rb (0 ≤ i ≤ n)

c0 ⊗ c1 ⊗ · · · ⊗ cn−1 ⊗ cn 7→ c0 ⊗ · · · ⊗ ci−1 ⊗∆(ci)⊗ ci+1 ⊗ · · · ⊗ cn

induced by the coproduct ∆ : C → C ⊗ C when i = 1, . . . , n− 1, and

δ0 : c0 ⊗ c1 ⊗ · · · ⊗ cn−1 ⊗ cn 7→ ρr,a(c0)⊗ c1 ⊗ · · · ⊗ cn−1 ⊗ cn,

δn : c0 ⊗ c1 ⊗ · · · ⊗ cn−1 ⊗ cn 7→ c0 ⊗ c1 ⊗ · · · ⊗ cn−1 ⊗ ρl,b(cn),

where the map ρr,a is defined as the composition

Ra
∼= R

∼=−→ R⊗R
id⊗ia−−−→ R⊗ C ∼= Ra ⊗ C

for ia : R → C being induced by the inclusion {a} ↪→ S and ρl,b : Rb → C ⊗ Rb is
defined similarly. The codegeneracy maps are defined by

σi : Ra ⊗ C⊗n+1 ⊗Rb → Ra ⊗ C⊗n ⊗Rb (0 ≤ i ≤ n)

c0 ⊗ c1 ⊗ · · · ⊗ cn+1 ⊗ cn+2 7→ c0 ⊗ · · · ⊗ ci ⊗ ε(ci+1)⊗ ci+2 ⊗ · · · ⊗ cn+2

where ε : C ↠ C0 → R is the counit map. Then Cobar
∏
(C)(a, b) is defined as the

totalization Tot
∏
({C(n; a, b)}n≥0).

The conormalization of the totalization Tot
∏
({C(n; a, b)}n≥0), which we de-

note by N cTot
∏
({C(n; a, b)}n≥0), is the subcomplex where any σi vanishes. The

inclusion N cTot
∏
↪→ Tot

∏
is a quasi-isomorphism (cf. [Iri17, Lemma 2.5]).
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Example 2.1. Let X be a topological space and let b ∈ X. We are interested in
the following examples of differential graded coalgebras C equipped with a set of
objects S such that C0 = R[S]:

• C = C•(X), with S the set of points in X.
• C = C0

•(X, b) or C
1
•(X, b), with S = {b}.

In case X =M is a smooth manifold, we may also restrict the discussion to piece-
wise smooth singular chains Cs

•.

2.2. The natural transformations A,G and the natural map ItX . For any
topological space X, the functors AX , GX act as the identity on objects. In the
following, we describe the action of AX , GX and ItX on the morphism complexes.

2.2.1. The “many object” version of Adams’ map. Denote by v0, . . . , vn the vertices
of the standard n-simplex ∆n ⊂ Rn+1. Using the method of acyclic models, one
may construct a collection of singular cubical chains

{θn : In−1 → P(∆n)(v0, vn)}n≥1
such that

(1) θ1(0) ∈ P(∆1)(v0, v1) is the (Moore) path θ1(0) : [0,
√
2] → ∆1 given by

θ1(0)(s) = v0 +
s√
2
(v1 − v0),

and
(2)

∂□ ◦ θn =

n−1∑
i=1

(−1)i(P(ln−i,n) ◦ θn−i) ∗ (P(fi,n) ◦ θi)−
n−1∑
i=1

(−1)iP(di) ◦ θi,

where lj,n : ∆j ↪→ ∆n and fj,n : ∆j ↪→ ∆n denote the last and first j-
dimensional face inclusions, respectively, di : ∆n−1 ↪→ ∆n denotes the i-th
face inclusion, and ∗ denotes concatenation of paths.

See [MR24, Section 3.4] for a description of an explicit choice of maps {θn}n≥1.
This construction goes back to [Ada56, Section 3].

Any such collection of maps {θn}n≥1 gives rise to a well defined linear map of
degree −1

AX : C(X) →
⊕

a,b∈X

C□(P(X))(a, b)

by sending a class represented by a singular chain σ : ∆n → X to

AX(σ) = P(σ) ◦ θn : In−1 → P(X)(σ(v0), σ(vn)).

The map AX satisfies the (curved) Maurer-Cartan equation

∂□ ◦AX −AX ◦ ∂̃ = ∗ ◦ (AX ⊗AX) ◦ ∆̃ + h̃,

where h̃ : C(X) →
⊕

a,b∈X C□(P(X))(a, b) is the degree −2 map given by the com-
position

C(X)
ρr−→ C(X)⊗ C0(X)

h⊗id−−−→ R⊗ C0(X) ∼= C0(X)

↪→
⊕
a∈X

C□(P(X))(a, a) ↪→
⊕

a,b∈X

C□(P(X))(a, b).
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Extending AX to be compatible with composition, for any a, b ∈ X, we obtain a
natural degree 0 linear map

AX : Cobar⊠(C(X))(a, b) → C□(P(X))(a, b),

which, by the Maurer-Cartan equation above, is a chain map.

2.2.2. A formal dual of Chen’s iterated integral map. Given a, b ∈ X, the chain map

(2.3) ItX : C□(PX)(a, b) → Cobar
∏
(C(X))(a, b)

is defined as the composition of several maps specified below.
Step 1. There is a natural chain map

η□,∆ : C□
• (PX)(a, b) → C∆

•(PX)(a, b) = C•(PX(a, b)),

induced by the standard triangulation of cubes. Concretely, for any singular cube
λ : [0, 1]n → PX(a, b),

η□,∆(λ) =
∑
τ∈Sn

(−1)sgn(τ) λ ◦ ιτ ,

where Sn denotes the symmetric group on n letters, and

ιτ : ∆n → [0, 1]n, (t1, . . . , tn) 7→ (tτ(1), . . . , tτ(n))

for 0 ≤ t1 ≤ · · · ≤ tn ≤ 1. More generally,

η□,∆ : C□
• ⇒ C∆

•

is a natural transformation from the normalized cubical singular chain functor on
topological spaces to the normalized simplicial singular chain functor; the map
displayed above is its component at the space PX(a, b) and these are natural with
respect to continuous maps of spaces.

Step 2. Consider the cosimplicial space

[n] 7−→ PX(a, b)× ∆n

with cosimplicial structure induced from the standard one [n] 7→ ∆n. Set

un := id∆n ∈ Cn(∆
n), u := {un}n≥0.

Then, the linear maps

C•(PX(a, b)) → C•+n(PX(a, b)× ∆n), x 7→ (−1)nx× un,

for all n ≥ 0 together induce a chain map

Φu : C•(PX(a, b)) → Tot
∏
• ({C(PX(a, b)× ∆n)}n≥0).

More generally, any choice of u = {un ∈ Cn(∆n)}n≥0 that satisfies

(2.4) [u0] = [id∆0 ] ∈ H0(∆
0) and ∂un =

n∑
i=0

(−1)i(di)∗(un−1) (∀n ≥ 1)

suffices to define Φu. Moreover, by an acyclic models argument, using the fact that
Hn+1(∆n) = 0 for all n ≥ 0, one can show that the chain homotopy class of Φu is
independent of the choice of u.

Step 3. Consider the cosimplicial space n 7→ {a}×Xn×{b} with cofaces induced
by the diagonal map and codegeneracies given by forgetful maps. The evaluation
maps

Evn : PX(a, b)× ∆n → {a} ×Xn × {b},
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((γ, T ), (t1, . . . , tn)) 7→ (a, γ(t1T ), . . . , γ(tnT ), b)

for all n ≥ 0 respect cosimplicial structures, inducing a chain map

Ev∗ : Tot
∏
({C(PX(a, b)× ∆n)}n≥0) → Tot

∏
({C({a} ×Xn × {b})}n≥0).

Step 4. Iterations of the standard Alexander-Whitney map define a cosimplicial
chain map

AWn : C•({a} ×Xn × {b}) → (Ra ⊗ C(X)⊗n ⊗Rb)•, n ≥ 0,

inducing a chain map

AW : Tot
∏
• ({C({a} ×Xn × {b})}n≥0) → Cobar

∏
(C(X))(a, b).

We have thus defined (2.3) as the composition

ItX = AW ◦ Ev∗ ◦ Φu ◦ η□,∆.

Remark 2.2. In the definition of ItX , we chose to triangulate cubes right from
the beginning. Alternatively, one may remain in the setting of normalized cubical
singular chains and pass to normalized simplicial singular chains later, either before
Ev∗ or before AW . In this case,

ItX = AW ◦ η□,∆ ◦ Ev∗ ◦ Φv = AW ◦ Ev∗ ◦ η□,∆ ◦ Φv,

where v = { vn ∈ C□
n (∆n) }n≥0 is chosen such that v0 is the unique point map and

∂□vn =

n∑
i=0

(−1)i(di)∗(vn−1) for all n ≥ 1.

Lemma 2.3 below, together with the fact that η□,∆ intertwines the cross products
on cubes and simplices, implies that these two approaches are equivalent:

Ev∗ ◦ Φu ◦ η□,∆ = η□,∆ ◦ Ev∗ ◦ Φv = Ev∗ ◦ η□,∆ ◦ Φv

if v = η∆,□(u) or u = η□,∆(v). Note that v = η∆,□(u) acturally implies u = η□,∆(v)
by Lemma 2.3.

Lemma 2.3. There is a natural transformation

η∆,□ : C∆
• ⇒ C□

•

from the normalized simplicial singular chain functor to the normalized cubical
singular chain functor, such that

η□,∆ ◦ η∆,□ = idC∆
•
.

Proof. For every n ≥ 0, define a folding map

fn : I
n → ∆n, fn(t1, . . . , tn) = (t′1, . . . , t

′
n), t′k = max{t1, . . . , tk}.

A similar map appears in [Igu09, Section 4.2], although for a different purpose.
For any topological space Y and any singular simplex σ : ∆n → Y , define

η∆,□
Y (σ) = σ ◦ fn : In → Y,

and extend linearly to C∆
• (Y ). By construction, η∆,□

Y is natural in Y .

To see that η∆,□
Y is a chain map, observe that among the cubical faces of η∆,□

Y (σ),
those of the form {tk = 1} with k < n are degenerate, while the remaining n + 1
non-degenerate faces correspond exactly to the simplicial faces of σ.
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Finally, to verify that η□,∆
Y ◦ η∆,□

Y = idC∆
• (Y ), compute

(η□,∆
Y ◦ η∆,□

Y )(σ) =
∑
τ∈Sn

sgn(τ)σ ◦ fn ◦ ιτ = σ,

since fn ◦ ιτ is degenerate whenever τ ̸= id, and fn ◦ ιid = id∆n . □

Remark 2.4. Let M be a smooth manifold, Ω•(M) the dg algebra of differential
forms on M , and PsM(a, b) the space of piecewise smooth Moore loops in M from
a to b. Set R = R. The iterated integral map for PsM(a, b), originally due to Chen
in [Che73], is a cochain map

(2.5)

∫
: Bar(Ra,Ω(M),Rb) → Ω•(PsM(a, b)),

where Bar denotes a version of the classical bar construction and differential forms
on PsM(a, b) are defined via the framework of of differentiable spaces. Following
the presentation in [GJP91],

∫
is induced by a sequence of maps

Ra ⊗ Ω•(M)⊗n ⊗ Rb ↪→ Ω•({a} ×Mn × {b})
Ev∗

n−−→ Ω•(PsM(a, b)× ∆n)

∫
∆n−−→ Ω•−n(PsM(a, b))

for n ≥ 0, where
∫

∆n denotes integration along the fibers. Consider the pairing

Ω•(Y )× Cs
•(Y ) → R

induced by integration, where Y is M or PsM(a, b), and the pairing

Bar(Ra,Ω
•(M),Rb)× Cobar

∏
(Cs
•(M))(a, b) → R(2.6) 〈 N∑

n=0

1⊗ ωn,1 ⊗ · · · ⊗ ωn,n ⊗ 1 ,
(
1⊗ αm,1 ⊗ · · · ⊗ αm,m ⊗ 1

)
m≥0

〉
=

N∑
n=1

⟨ωn,1, αn,1⟩ · · · ⟨ωn,n, αn,n⟩

induced by summing up integrations levelwise. There is a chain map

ItM : Cs
•(P

sM(a, b)) → Cobar
∏
• (C

s(M))(a, b)

defined analogously to (2.3). The maps ItM and
∫

(2.5) are formally dual in the
sense that 〈∫

ω , α
〉
=

〈
ω , ItM (α)

〉
for any ω ∈ Bar(Ra,Ω

•(M),Rb) and α ∈ Cs
•(P

sM(a, b)).

Now set a = b, and denote the product on Cs
•(P

sM(a, a)) by ×. For brevity, write
1⊗ ω1 ⊗ · · · ⊗ ωn ⊗ 1 as ω1 · · ·ωn. For any α, β ∈ Cs

•(P
sM(a, a)) and ω1, . . . , ωn ∈

Ω(M), we have〈
ω1 · · ·ωn , ItM (α× β)

〉
=

〈∫
ω1 · · ·ωn , α× β

〉
(2.7)

=

n∑
i=1

〈∫
ω1 · · ·ωi , α

〉〈∫
ωi+1 · · ·ωn , β

〉
=

n∑
i=1

〈
ω1 · · ·ωi , ItM (α)

〉〈
ωi+1 · · ·ωn , ItM (β)

〉
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=
〈
ω1 · · ·ωn , ItM (α)ItM (β)

〉
,

where the equality on the second line is exactly [Che73, (1.6.2)], and the last line fol-

lows from the fact that the concatenation product on Cobar
∏
(Cs
•(M))(a, b) is dual

to the deconcatenation coproduct on Bar(Ra,Ω
•(M),Ra) under the pairing (2.6).

Equation (2.7) suggests that ItM preserves the products (compositions) up to
terms that vanish under the integration pairing with differential forms. A more
general and precise statement is Theorem 1.2, which we prove in Section 3.1.

2.2.3. The natural transformation G. For any a, b ∈ X, define a degree 0 linear map

GX : Ra ⊠ s−1C(X)⊠Rb → Cobar
∏
(C(X))(a, b)

such that for any σ : ∆n → X,

GX(s−1σ) = s−1σ + e(σ) ∈ (Ra ⊗ s−1C(X)⊗Rb)⊕ (Ra ⊗R⊗Rb),

where e is the map (2.2). Extending GX to be compatible with compositions, and
using the identification

Ra ⊠ (s−1C(X))⊠0 ⊠Rb
∼= R ∼= Ra ⊗R⊗Rb = Ra ⊗ (s−1C(X))⊗0 ⊗Rb,

we obtain a natural degree 0 linear map

(2.8) GX : Cobar⊠(C(X))(a, b) → Cobar
∏
(C(X))(a, b)

for any a, b ∈ X, which is compatible with compositions. A straightforward calcu-
lation shows that GX is a chain map.

3. Construction of I (Theorem 1.2) and H (Theorem 1.4)

This section establishes the existence of a natural A∞-transformation I extending
{ItX}X∈Top, and of an A∞-homotopy H between F = I ◦ A and G. Both I and
H are constructed via the method of acyclic models; the construction of I is more
geometric in nature, whereas the construction of H is more algebraic. At the end
of this section we provide a precise formulation of the statement that I is a left A∞-
homotopy inverse of A for simply connected spaces, as announced in Remark 1.5.

We begin by fixing A∞ sign conventions. Our sign conventions for A∞-categories
and A∞-functors follow those for A∞-algebras and A∞-morphisms in [LV12] and
differ from those in [Lef03]. The difference essentially arises from reversing the
order of inserting objects in the multilinear maps, which, together with the Koszul
sign convention for reordering graded objects, leads to a straightforward conversion
rule between the two conventions. Applying this rule to the A∞-algebra and A∞-
morphism signs in [Lef03] recovers exactly the conventions of [LV12]. Since [LV12]
does not specify signs for A∞-homotopies, we extend this conversion rule to the
A∞-homotopy signs from [Lef03], ensuring all signs remain compatible with [LV12].

For an A∞-category C and objects X0, . . . , Xn ∈ Ob(C), the structure maps

mC
n : HomC(X0, X1)⊗ · · · ⊗HomC(Xn−1, Xn) → HomC(X0, Xn)

are of degree n− 2, satisfying the A∞-relations∑
p+q+r=n

(−1)p+qrmC
p+1+r ◦

(
1⊗p ⊗mC

q ⊗ 1⊗r
)
= 0, ∀n ≥ 1.

For two A∞-categories C,C′, an A∞-functor F : C → C′ consists of a map

F : Ob(C) → Ob(C′)
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on objects and a collection of degree n− 1 linear maps

Fn : HomC(X0, X1)⊗ · · · ⊗HomC(Xn−1, Xn) → HomC′(
F (X0), F (Xn)

)
for all n ≥ 1 and X0, . . . , Xn ∈ Ob(C), satisfying that for any n ≥ 1,∑
p+q+r=n

(−1)p+qrFp+1+r

(
1⊗p ⊗mC

q ⊗ 1⊗r
)
=

∑
k≥1

i1+···+ik=n

(−1)ϵmC′

k

(
Fi1 ⊗ · · · ⊗ Fik

)
,

where

ϵ =

k∑
j=1

(k − j)(ij − 1).

For two A∞-functors F,F′ : C → C′ associated with the same object map F , an
A∞-homotopy H : F ⇒ F′ consists of a collection of degree n linear maps

Hn : HomC(X0, X1)⊗ · · · ⊗HomC(Xn−1, Xn) → HomC′(
F (X0), F (Xn)

)
for all n ≥ 1 and X0, . . . , Xn ∈ Ob(C), satisfying that for any n ≥ 1,

Fn − F ′n =
∑

p+q+r=n

(−1)p+qrHp+1+r

(
1⊗p ⊗mC

q ⊗ 1⊗r
)

+
∑

k≥l≥1
i1+···+ik=n

(−1)δmC′

k

(
Gi1 ⊗ · · · ⊗Gil−1

⊗Hil ⊗ Fil+1
⊗ · · · ⊗ Fik

)
,

where

δ = k − 1 +

k∑
j=1

(k − j)(ij − 1).

Under the above conventions, we focus on dg categories, i.e., A∞-categories
where m1 is the differential, m2 the composition, and mn = 0 for all n > 2.

3.1. Proof of Theorem 1.2. Recall from Section 2.2.2 that ItX is the composition
of natural chain maps

C□
• (PX)(a, b)

Φv−−→ Tot
∏
• ({C□(PX(a, b)× ∆n)}n≥0)

η□,∆

−−−→ Tot
∏
• ({C(PX(a, b)× ∆n)}n≥0)

Ev∗−−→ Tot
∏
• ({C({a} ×Xn × {b})}n≥0)

AW−−→ Cobar
∏
• (C(X))(a, b).(3.1)

Clearly, AW defines a functor between dg categories, natural in X ∈ Top, where
the composition on {

Tot
∏
• ({C({a} ×Xn × {b})}n≥0)

}
a,b∈X

is induced by the Cartesian product of spaces:

{a} ×Xn1 × {b} × {b} ×Xn2 × {c} → {a} ×Xn1+n2 × {c}.
Hence it suffices to show that Ev∗◦η□,∆◦Φv is an A∞-functor between dg categories.
This naturally leads one to seek associative compositions on the families{
Tot

∏
• ({C□(PX(a, b)× ∆n)}n≥0)

}
a,b∈X ,

{
Tot

∏
• ({C(PX(a, b)× ∆n)}n≥0)

}
a,b∈X ,

respectively, and to analyze Ev∗, η
□,∆, and Φv separately. The most natural can-

didate for such compositions would be induced by space maps

PX(a, b)× ∆n1 × PX(b, c)× ∆n2 → PX(a, c)× ∆n1+n2 ,
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defined by concatenating paths and gluing points in ∆n1 ,∆n2 proportionally to their
respective path lengths. However, such maps fail to exist when both paths have
zero length, so the composition is only partially defined.

To settle this issue, we introduce a cosimplicial space

[n] 7→ PnX(a, b) :=
{
(γ, T,t1, . . . , tn) |(3.2)

(γ, T ) ∈ PX(a, b), 0 ≤ t1 ≤ · · · ≤ tn ≤ T
}
,

whose cosimplicial structure parallels that of both PX(a, b)×∆n and {a}×Xn×{b};
see also [Wan24, (4.2a), (4.2b)]. The families{

Tot
∏
• ({C□(PnX(a, b))}n≥0)

}
a,b∈X ,

{
Tot

∏
• ({C(PnX(a, b))}n≥0)

}
a,b∈X

both admit associative compositions induced by path concatenation together with
the obvious gluing of marked points, and therefore form the morphism sets of dg
categories. Recognizing [n] 7→ PnX as a cosimplicial analogue of the nerve N(PX)
of PX, we denote the resulting dg categories by

(TotC□ ◦ cN)(PX) and (TotC∆ ◦ cN)(PX).

There is a family of natural maps

qn : PX(a, b)× ∆n → PnX(a, b)

(γ, T, t1, . . . , tn) 7→ (γ, T, t1T, . . . , tnT )

respecting cosimplicial structures, and a family of evaluation maps

evn : P
nX(a, b) → {a} ×Xn × {b}

(γ, T, t1, . . . , tn) 7→ (a, γ(t1), . . . , γ(tn), b)

respecting cosimplicial structures and compositions, such that Evn = evn ◦ qn.
Thus, we have a commutative diagram of natural chain maps:

(3.3)

C□
• (PX)(a, b) Tot

∏
•
(
{C□(PnX(a, b))}n≥0

)
Tot

∏
•
(
{C□(PX(a, b)× ∆n)}n≥0

)
Tot

∏
•
(
{C(PnX(a, b))}n≥0

)
Tot

∏
•
(
{C(PX(a, b)× ∆n)}n≥0

)
Tot

∏
• ({C({a} ×Xn × {b})}n≥0),

q∗◦Φv

Φv η□,∆

η□,∆ ev∗

Ev∗

where ev∗ defines a functor between dg categories.
Now, Theorem 1.2 reduces to the following lemma.

Lemma 3.1. For any topological space X, the natural chain map

JX,1 := η□,∆ ◦ q∗ ◦ Φv

in (3.3) extends to a natural A∞-functor

JX = {JX,k}k≥1 : C□(PX) → (TotC∆ ◦ cN)(PX).

Explicitly, there exists, for each k ≥ 1 and a0, . . . , ak ∈ X, a natural linear map

JX,k :

k⊗
i=0

C□(PX)(ai−1, ai) → Tot
∏(

{C(PnX(a0, ak))}n≥0
)
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of degree k − 1; and the collection {JX,k}k≥1 satisfies, for any k ≥ 1,

D
∏

◦ JX,k =
∑

p+r=k−1

(−1)k−1JX,k ◦ (1⊗p ⊗ ∂□ ⊗ 1⊗r)

+
∑

p+r=k−2

(−1)pJX,k−1 ◦ (1⊗p ⊗ µ⊗ 1⊗r)

+
∑

i+j=k

(−1)iµ
∏

◦ (JX,i ⊗ JX,j),

where µ and µ
∏

denote the respective compositions.

Once Lemma 3.1 is proved, Theorem 1.2 follows by setting

IX := AW ◦ ev∗ ◦ JX .

In preparation for the proof of Lemma 3.1, for any T ≥ 0 and integer n ≥ 0, set

∆n
T := {(t1, . . . , tn) ∈ Rn | 0 ≤ t1 ≤ · · · ≤ tn ≤ T},

which is the standard n-simplex scaled by T . In particular, ∆n
0 consists of a single

point 0. For any T ≥ 0, the assignment [n] 7→ ∆n
T forms a cosimplicial space

analogous to the standard one at T = 1. Indeed, {∆n
T }n≥0 identifies with the

cosimplicial subspace of {Pn{a}(a, a)}n≥0 consisting of constant marked paths of
length T in the singleton space {a}. The family {∆n

T }n≥0, T≥0 inherits an associative
composition

◦ : ∆n1

T1
× ∆n2

T2
→ ∆n1+n2

T1+T2

from {Pn{a}(a, a)}n≥0, inducing an associative composition

◦ : Tot
∏
• ({C□(∆n

T1
)}n≥0)⊗ Tot

∏
• ({C□(∆n

T2
)}n≥0) → Tot

∏
• ({C□(∆n

T1+T2
)}n≥0),

which is a chain map.
The sequence v = {vn ∈ C□

n (∆n)}n≥0 in Remark 2.2 identifies with a 0-cycle

ṽ = (ṽn)n≥0 = ((−1)nvn)n≥0 ∈ Tot
∏
• ({C□(∆n)}n≥0)

such that v0 is the fudamental cycle of ∆0. For any T ≥ 0, denote by

sT : ∆n → ∆n
T

the scaling map, and define

ξ0⟨T ⟩ := (sT )∗(ṽ) ∈ Tot
∏
0 ({C□(∆n

T )}n≥0).

Lemma 3.2. There exists a family of chains{
ξk⟨λ0 | · · · | λk⟩ ∈ Tot

∏
k

(
{C□(∆n

λ0+···+λk
)}n≥0

)}
k≥0, λ0,...,λk≥0

with ξ0⟨λ0⟩ defined above, satisfying the following two properties:

(1) For any k ≥ 0 and λ0, . . . , λk ∈ [0,∞), the chain ξk⟨λ0 | · · · | λk⟩ depends
continuously on λ0, . . . , λk. More precisely, for any k, n ≥ 0, there exists
an integer N(k, n) ≥ 1, and for each 1 ≤ i ≤ N(k, n) a scalar ckn,i ∈ R and
a continuous map

τkn,i : I
k+n × [0,∞)k+1 → Rn,
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such that: for any x ∈ Ik+n and λ0, . . . , λk ∈ [0,∞), τkn,i(x, λ0, . . . , λk)
lies in ∆n

λ0+···+λk
; and for any λ0, . . . , λk ∈ [0,∞), the n-component of

ξk⟨λ0 | · · · | λk⟩ is given by

ξkn⟨λ0 | · · · | λk⟩ =
N(k,n)∑
i=1

ckn,iτ
k
n,i( · , λ0, . . . , λk).

(2) For any k ≥ 0 and λ0, . . . , λk ≥ 0,

D
∏
(ξk⟨λ0 | · · · | λk⟩) =

k−1∑
i=0

(−1)iξk−1⟨λ0 | · · · | λi + λi+1 | · · · | λk⟩(3.4)

+

k−1∑
i=0

(−1)i−1ξi⟨λ0 | · · · | λi⟩ ◦ ξk−1−i⟨λi+1 | · · · | λk⟩.

Proof. We prove the lemma by induction on k. Once a choice of ξk has been made
for some k, it will remain fixed in all subsequent steps.

First, for k = 0, ξ0⟨λ0⟩ = (sλ0
)∗(ṽ) depends continuously on λ0, and satisfies

D
∏
(ξ0⟨λ0⟩) = (sλ0

)∗(D
∏
ṽ) = 0.

Next, assume the lemma holds for all k′ < k with k ≥ 1, and let

Ξk⟨λ0 | · · · | λk⟩

denote the right-hand side of (3.4). By the inductive hypothesis, a straightforward
computation shows that

D
∏
(Ξk⟨λ0 | · · · | λk⟩) = 0,

so Ξk⟨λ0 | · · · | λk⟩ is a cycle.
We now construct a bounding chain of Ξk⟨λ0 | · · · | λk⟩ that depends continu-

ously on λ0, . . . , λk. For T = λ0 + · · ·+ λk, consider the maps

hn : [0, 1]× ∆n
T → ∆n

T , (s, t1, . . . , tn) 7→ (st1, . . . , stn), n ≥ 0.

These define deformation retractions of ∆n
T onto the point ∆n

0 ⊂ ∆n
T , compatible

with the cosimplicial structure maps.
Define a linear homotopy operator

H = {Hn}n≥0 : Tot
∏
• ({C□(∆n

T )}n≥0) → Tot
∏
•+1({C□(∆n

T )}n≥0)
(xn)n≥0 7→

(
(hn)∗(id[0,1] × xn)

)
n≥0.

Then

D
∏

◦H +H ◦D
∏

= id− c,

where c = {cn}n≥0 is induced by the contraction maps hn(·, 0). Thus,

D
∏(
H(Ξk⟨λ0 | · · · | λk⟩)

)
= Ξk⟨λ0 | · · · | λk⟩ − c(Ξk⟨λ0 | · · · | λk⟩).

It remains to show that

c(Ξk⟨λ0 | · · · | λk⟩) = 0;

then H(Ξk⟨λ0 | · · · | λk⟩) gives the desired bounding chain.
Since hn(·, 0) factors through ∆n

0 , we can view each component

cn(Ξ
k
n⟨λ0 | · · · | λk⟩), n ≥ 0,
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of the (k−1)-chain c(Ξk⟨λ0 | · · · | λk⟩) as lying in C□
• (∆

n
0 ) = C□

• (pt), which vanishes
in positive degrees. Since each such component has degree k − 1 + n, it vanishes
automatically if k > 1 or n > 0; for the exceptional case k = 1 and n = 0, we have

c0(Ξ
1
0⟨λ0 | λ1⟩) = c0(ξ

0
0⟨λ0 + λ1⟩ − ξ00⟨λ0⟩ ◦ ξ00⟨λ1⟩)

= c0((sλ0+λ1)∗(v0))− c0((sλ0)∗(v0) ◦ (sλ1)∗(v0)),

which is the difference of two terms both equal to the fundamental cycle of ∆0
0 = pt,

and is therefore zero. This completes the proof. □

Proof of Lemma 3.1. Fix once and for all the family {ξk⟨λ0 | · · · | λn⟩}, or equiva-
lently, a collection of scalars and continuous maps{

ckn,i ∈ R, τkn,i : I
k+n × [0,∞)k+1 → Rn

}
k≥0, n≥0, 1≤i≤N(k,n)

,

provided by Lemma 3.2.
Let k ≥ 1, and consider points a0, . . . , ak ∈ X together with singular cubes

σj : I
dj → PX(aj−1, aj), x 7→ (γj(x), Tj(x)), 1 ≤ j ≤ k,

where Tj : I
dj → [0,∞) and γj(x) : [0, Tj(x)] → X is a path.

For any n ≥ 0 and 1 ≤ i ≤ N(k − 1, n), define a continuous map

Jk,n,i : I
d1 × · · · × Idk × Ik−1+n → PnX(a0, ak)

(x1, . . . , xk, y) 7→
(
σ1(x1) ∗ · · · ∗ σk(xk), τk−1n,i (y, T1(x1), . . . , Tk(xk))

)
.

Each Jk,n,i determines a normalized cubical chain on PnX(a0, ak).
We then define, for every k ≥ 1, an R-linear map

J′X,k :
⊗

1≤j≤k

C□(PX)(aj−1, aj) → Tot
∏(

{C□(PnX(a0, ak))}n≥0
)

J′X,k(σ1 ⊗ · · · ⊗ σk) =

( N(k−1,n)∑
i=1

(−1)(k−1)(d1+···+dk)ck−1n,i Jk,n,i

)
n≥0

,

and finally define

JX,k = η□,∆ ◦ J′X,k.

By construction, {JX,k}k≥1 is an A∞-functor extending JX,1 = η□,∆ ◦ q∗ ◦ Φv. □

Remark 3.3. There is a subtlety: the collection {J′X,k}k≥1 is not an A∞-functor

extending J′X,1 = q∗ ◦ Φv, as the A∞-functor relations hold only up to switching
cube coordinates in normalized cubical singular chains. To illustrate, consider the
relation between J′X,1 and J′X,2. For σi : I

di → PX(ai−1, ai), one needs to compare

D
∏
(J′X,2(σ1 ⊗ σ2)) + J′X,2(∂(σ1 ⊗ σ2))

with

J′X,1(σ1 ◦ σ2)− J′X,1(σ1) ◦ J′X,1(σ2).

For any n ≥ 0, the C□(PnX(a0, a2))-component of J′X,1(σ1)◦J′X,1(σ2) is a weighted

sum, over n1 + n2 = n and 1 ≤ i ≤ N(0, n), of chains of the form

Id1 × In1 × Id2 × In2 → PnX(a0, a2),

(x1, y1, x2, y2) 7→
(
σ1(x1) ∗ σ2(x2), τ0n,i(y1, T1(x1)), T1(x1) + τ0n,i(y2, T2(x2))

)
.
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The corresponding part in D
∏
(J′X,2(σ1 ⊗ σ2)) + J′X,2(∂(σ1 ⊗ σ2)) is, however, a

weighted sum of chains of the form

Id1 × Id2 × In1 × In2 → PnX(a0, a2),

(x1, x2, y1, y2) 7→
(
σ1(x1) ∗ σ2(x2), τ0n,i(y1, T1(x1)), T1(x1) + τ0n,i(y2, T2(x2))

)
.

Thus, the two expressions differ by switching the Id2 and In1 coordinates, with
signs changing accordingly. This difference vanishes upon passing to normalized
simplicial singular chains, since η□,∆ is defined by a sum over all permutations of
the cube coordinates, each with its signature.

Remark 3.4. By construction, ξk⟨λ0 | · · · | λk⟩ = 0 if k > 0 and some λi = 0. For
k = 0, we have ξ0n⟨0⟩ = 0 (n > 0) and ξ00 = idpt ∈ C□

0 (∆0
0) = C□

0 (pt). Consequently,
JX is a unital A∞-functor, in the sense that JX,1 respects identity morphisms and
JX,k (k > 1) vanishes whenever one of its inputs is an identity morphism. It follows
that the A∞-functors IX and FX are also unital.

3.2. Proof of Theorem 1.4. We need the following acyclicity lemma.

Lemma 3.5. For any contractible topological space X and a, b ∈ X, the projection
chain map

pr0 : Cobar
∏
(C(X))(a, b) → Ra ⊗Rb, (xn)n≥0 7→ x0

is a quasi-isomorphism. Hence, H•(Cobar
∏
(C(X))(a, b)) ∼= R is concentrated in

degree zero.

Proof. This is an easy consequence of [Iri17, Lemma 8.3]. □

Now we begin the proof of Theorem 1.4. Explicitly, we need to show that there
exists, for any topological space X, k ≥ 1 and a0, . . . , ak ∈ X, a natural linear map

HX,k :
⊗

1≤i≤k

Cobar⊠(C(X))(ai−1, ai) → Cobar
∏
(C(X))(a0, ak),

and the collection {HX,k}k≥1 satisfies, for any k ≥ 1,

FX,k − GX,k = D
∏

◦HX,k +
∑

p+r=k−1

(−1)k−1 HX,k ◦
(
1⊗p ⊗D⊠ ⊗ 1⊗r

)
+

∑
p+r=k−2

(−1)p HX,k−1 ◦
(
1⊗p ⊗ µ⊠ ⊗ 1⊗r

)
(3.5)

+
∑

i+j=k

(−1)i
(
µ
∏

◦
(
HX,i ⊗ FX,j

)
+ µ

∏
◦
(
GX,i ⊗HX,j

))
,

where µ⊠ and µ
∏

denote the respective compositions in Cobar⊠ and Cobar
∏
.

Consider the following statement S(k, d) for integers k ≥ 1 and d ≥ 0:

• S(k, d): For any topological space X and a0, . . . , ak ∈ X, the natural linear
maps HX,k′ can be defined on all tensors

x1 ⊗ · · · ⊗ xk′ ∈
k′⊗
i=1

Cobar⊠(C(X))(ai−1, ai)

with k′ < k and deg x1 + · · · + deg xk′ ≤ d, in such a way that (3.5) holds
on these elements.
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Theorem 1.4 is equivalent to the assertion that S(k, d) holds for all k ≥ 1 and d ≥ 0.
First of all, we set HX,k to be zero if any of its inputs is a multiple of an identity

morphism; then (3.5) holds on such inputs by Remark 3.4 and the fact that GX

respects identities.
Next, we prove S(k, d) for all k, d by induction on (k, d) in lexicographic order:

(k′, d′) < (k, d) if either (i) k′ < k, or (ii) k′ = k and d′ < d.

For the induction, we denote by Hd
X,k the restriction of the (yet to be constructed)

map HX,k to elements of total internal degree ≤ d; similarly, we write Fd
X,k and Gd

X

for the corresponding restrictions of FX,k and GX . Once defined for a pair (k, d),
the maps Hd

X,k are not modified in any subsequent steps.

Fix (k, d) with k ≥ 0 and d ≥ 0, suppose S(k′, d′) holds for all (k′, d′) < (k, d),
we aim to construct Hd

X,k with the desired properties. (Note that the assumption

for (k, d) = (1, 0) is vacuumly true.) It suffices to define

Hd
X,k(x1 ⊗ · · · ⊗ xk)

for all
xi ∈ Rai−1

⊠ (s−1C(X))⊠ni ⊠Rai
, ni > 0 (1 ≤ i ≤ k)

with
deg x1 + · · ·+ deg xk = d

in a way that is natural in X, and to verify that on such x1 ⊗ · · · ⊗ xk,

D
∏

◦Hd
X,k = Fd

X,k − Gd
X,k +

∑
p+r=k−1

(−1)k Hd−1
X,k ◦

(
1⊗p ⊗D⊠ ⊗ 1⊗r

)
+

∑
p+r=k−2

(−1)p−1 Hd
X,k−1 ◦

(
1⊗p ⊗ µ⊠ ⊗ 1⊗r

)
(3.6)

+
∑

i+j=k

(−1)i−1
(
µ
∏

◦
(
Hd

X,i ⊗ Fd
X,j

)
+ µ

∏
◦
(
Gd
X,i ⊗Hd

X,j

))
.

For any ordered k-tuple d⃗ of ordered tuples of positive integers, d⃗ = (d1, . . . ,dk)
with di = (di,1, . . . , di,ni

) and di,j > 0, define its degree by

deg d⃗ :=
k∑

i=1

ni∑
j=1

(di,j − 1).

Let

ιi,j : ∆di,j ↪→
k∨

i′=1

ni′∨
j′=1

∆di′,j′ =: ∆d⃗, 1 ≤ i ≤ k, 1 ≤ j ≤ ni

be the obvious inclusion maps, where the wedge sum denotes a k-necklace, i.e., it
is formed by successively identifying the last vertex of each simplex with the first
vertex of the next in the order

∆d1,1 ∨ · · · ∨ ∆d1,n1 ∨ ∆d2,1 ∨ · · · ∨ ∆dk,nk .

There is a canonical chain

⊗k
i=1 ⊠

ni
j=1 s

−1ιi,j ∈
k⊗

i=1

(
Rvmi−1

⊠
( ni

⊠
j=1

s−1Cdi,j
(∆d⃗)

)
⊠Rvmi

)
,

where mi =
∑i

i′=1

∑ni′
j=1 di′,j , and vp denotes the (p+ 1)-th vertex of ∆d⃗.
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Now assume deg d⃗ = d. Denote by

Ψd⃗ ∈ Cobar
∏
(C(∆d⃗))(v0, vd)

the chain obtained by applying the right-hand side of (3.6) to ⊗k
i=1 ⊠

ni
j=1 s

−1ιi,j .
Then we have the following lemma.

Lemma 3.6. There exists a chain ψd⃗ ∈ Cobar
∏
(C(∆d⃗))(v0, vd) such that

D
∏
ψd⃗ = Ψd⃗.

Proof. One checks by the inductive hypothesis that Ψd⃗ is a cycle, so it remains to

show that [Ψd⃗] = 0 in homology.

Notice that degΨd⃗ = k − 1 +
∑

i,j(di,j − 1). If k > 1 or some di,j > 1, then

degΨd⃗ > 0, and then by Lemma 3.5, [Ψd⃗] = 0.

It remains to consider the case k = 1 and d⃗ = d1 = (1, . . . , 1). For simplicity,
denote by

ιi : ∆1 ↪→ ∆1 ∨ · · · ∨ ∆1 = ∆1,...,1

the inclusion map sending ∆1 onto the i-th copy of ∆1. By definition,

Ψ1,...,1 = F∆1,...,1,1(s
−1ι1 ⊠ · · ·⊠ s−1ιk)− G∆1,...,1(s−1ι1 ⊠ · · ·⊠ s−1ιk).

Since FX , GX are functorial in homology,

[Ψ1,...,1] = Πk
i=1[F∆1,...,1,1(s

−1ιi)]−Πk
i=1[G∆1,...,1(s−1ιi)].

Since F = I ◦A, for each 1 ≤ i ≤ k, we have

F∆1,...,1,1(s
−1ιi) = I∆1,...,1,1(ῑi) =

(
(vi−1 · 1R)⊗ (s−1

←
ιi)
⊗n ⊗ (1R · vi)

)
n≥0,

where ῑi ∈ P∆1,...,1(vi−1, vi) denotes the point representing the path ιi, and
←
ιi is

the reversal of ιi, i.e.
←
ιi(t) = ιi(1− t) for t ∈ [0, 1]. Also,

G∆1,...,1(s−1ιi) = vi−1 · 1R · vi + (v0 · 1R)⊗ (s−1ιi)⊗ (1R · v1).
It follows that

(pr0)∗([Ψ
1,...,1]) = [1R]− [1R] = 0 ∈ H0(∆

1,...,1).

By Lemma 3.5, [Ψ1,...,1] = 0, and the proof is complete. □

Fix a choice of ψd⃗ ∈ Cobar
∏
(C(∆d⃗))(v0, vd) provided by Lemma 3.6. For any

topological space X, integer k ≥ 1 and any two-indexed family of simplices

σi,j : ∆
di,j → X, 1 ≤ i ≤ k, 1 ≤ j ≤ ni,

such that the image of the last vertex of each simplex coincides with the image of
the first vertex of the next one, we denote by

(3.7) σ⃗ =

k∨
i=1

ni∨
j=1

σi,j : ∆
d⃗ → X

the resulting map, which we call a k-necklace in X. Then, we define

Hd
X,k(⊗k

i=1 ⊠
ni
j=1 s

−1σi,j) = σ⃗∗(ψ
d⃗).

Clearly Hd
X is natural in X, and by a routine computation using the inductive

hypothesis, equation (3.6) holds. This completes the proof of Theorem 1.4. □
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3.3. Elaboration on Remark 1.5. For any topological space X with a basepoint
b ∈ X, recall that C1(X, b) ⊂ C(X) denotes the dg subcoalgebra generated by
1-reduced simplices at b, i.e., simplices whose edges all map to b. Define the cate-
gorical subcoalgebra C1(X, b) ⊂ C(X) by setting C1(X, b) = C1(X, b) as R-modules
and S(C1(X, b)) = {b}. It is straightforward to check that C1(X, b) is a categorical
coalgebra with strict differential and zero curvature, hence a usual dg coalgebra,
and that the linear isomorphism

C1(X, b) ∼= C1(X, b)

is an isomorphism of coalgebras in the usual sense.
Let us now examine the restriction of the A∞-functor FX and the functor GX to

the dg subcategory Cobar⊠(C1(X, b)) of Cobar⊠(C(X)). We denote these restrictions
by FX |C1 and GX |C1 , respectively.

First, we claim that if un ∈ Cn(∆n) is chosen as un = id∆n for all n ≥ 0 in the
construction of I1, then

FX |C1 : Cobar⊠(C1(X, b)) → Cobar
∏
(C(X))

factors through the inclusion of dg categories

Cobar
∏
(C1(X, b)) ⊂ Cobar

∏
(C(X)).

It suffices to check that for any k ≥ 1, 1-reduced simplices σm : ∆dm → X
(1 ≤ m ≤ k), n ≥ 0, 1 ≤ j ≤ n and 1 ≤ i ≤ N(k − 1, n), the restriction of the map

Id1−1 × · · · × Idk−1 × Ik−1+n → X

(x1, . . . , xk, y) 7→

evn,j
(
AX(σ1)(x1) ∗ · · · ∗AX(σk)(xk), τ

k−1
n,i (y, T1(x1), . . . , Tk(xk))

)
to any edge of the domain cube is the constant map to b. Here,

evn,j : P
nX(b, b) → X

is the evaluation map at the j-th marked point, and τk−1n,i is constructed in Lemma 3.2.
This can be checked as follows. There are two types of edges:

• A vertex in Id1−1×· · ·×Idk−1 with an edge in Ik−1+n. By the definition of
Adams’ map, such an edge corresponds to the concatenation of some edges
of the 1-reduced simplices σ1, . . . , σk, hence is mapped to b.

• An edge in Id1−1 × · · · × Idk−1 with a vertex in Ik−1+n. By the choice of
un and the explicit inductive construction of ξk−1n in Lemma 3.2, the point

τk−1n,i (y, T1, . . . , Tk) ∈ ∆n
T1+···+Tk

is a vertex of the scaled simplex ∆n
T1+···+Tk

whenever y ∈ Ik−1+n is a vertex. Therefore such an edge is mapped to one
of the endpoints of AX(σ1)(x1) ∗ · · · ∗AX(σk)(xk), namely the basepoint b.

Hence the claim follows.
Next, observe that the map (2.2) vanishes on C1(X, b), so

GX |C1 : Cobar⊠(C1(X, b)) → Cobar
∏
(C(X))

is simply given by the inclusion induced from

C1(X, b) ∼= C1(X, b) ↪→ C1(X, b) ↪→ C(X)
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and the inclusion of a direct sum into a direct product. Moreover, since s−1C1(X, b)
is concentrated in positive degrees,

∞⊕
n=0

Rb ⊗ (s−1C1(X, b))⊗n ⊗Rb =

∞∏
n=0

Rb ⊗ (s−1C1(X, b))⊗n ⊗Rb.

Hence GX identifies Cobar⊠(C1(X, b)) = Cobar(C1(X, b)) with the conormalization

of Cobar
∏
(C1(X, b)), viewed as a subcategory of Cobar

∏
(C(X)).

Now assume X is simply connected. By the results in Section 4, the inclusion

Cobar⊠(C1(X, b)) ↪→ Cobar⊠(C(X))

is a quasi-equivalence. By comparing spectral sequences, the inclusion

Cobar
∏
(C1(X, b)) ↪→ Cobar

∏
(C(X))

is also a quasi-equivalence. The discussion above is summarized as follows.

Proposition 3.7. For any simply connected topological space X, the A∞-functor

IX : C□(PX) → Cobar
∏
(C(X))

acts as a left A∞-homotopy inverse of the functor

AX : Cobar⊠(C(X)) → C□(PX)

on the common subcategory Cobar⊠(C1(X, b)). More precisely, the inclusions of this

subcategory into Cobar⊠(C(X)) and Cobar
∏
(C(X)) are both quasi-equivalences,

and the restriction of the composition IX ◦AX to this subcategory is A∞-homotopic

to the conormalization inclusion Cobar⊠(C1(X, b)) ↪→ Cobar
∏
(C1(X, b)).

Remark 3.8. One could alternatively define Cobar
∏
(C) by additionally mod-

ding out the ideal generated by C0. On Cobar
∏
(C1(X, b)), this quotient is natu-

rally isomorphic to the conormalization, so in the alternative definition, the map

Cobar⊠(C1(X, b)) ↪→ Cobar
∏
(C1(X, b)) is the identity.

4. Adams’ map and the universal cover

In this section, we give an elementary proof of Theorem 1.8 and Corollary 1.9 by
passing to the universal cover and using Adams’ classical cobar theorem for simply
connected spaces. This section is essentially self-contained and does not use any
of the results proved earlier. Corollary 1.9 was originally proved in [RZ18] using
different methods.

Let X be a topological space. We may assume X is path-connected; otherwise
we argue separately on each path-connected component of X. Fix once and for all,
for each pair (a, b) ∈ X ×X with a ̸= b, a unit-length path

γab : [0, 1] → X, γab(0) = a, γab(1) = b,

and require that γba(t) = γab(1 − t) for all a, b ∈ X with a ̸= b and t ∈ [0, 1]. For
each b ∈ X, we also define a zero-length path

γbb : [0, 0] → X, γbb(0) = b.

Denote the resulting family of paths by

(4.1) OX = {γab}a,b∈X .
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For any two a, b ∈ X, there is a homotopy equivalence

Lγab
: PX(b, b) → PX(a, b), γ 7→ γab ∗ γ,

with homotopy inverse Lγba
: γ′ 7→ γba ∗ γ′. Similarly, for a ̸= b, define an R-linear

map

L⊠
γab

: Cobar⊠(C(X))(b, b) → Cobar⊠(C(X))(a, b), x 7→ (s−1γab)⊠ x,

where γab is regarded as a 1-simplex in X. Then L⊠
γab

is a chain-homotopy equiva-

lence with chain-homotopy inverse L⊠
γba

: x′ 7→ (s−1γba)⊠x′, and a chain homotopy

from the identity to L⊠
γba

◦ L⊠
γab

is given by x 7→ (s−1σ) ⊠ x, where σ = [v0, v1, v2]
has edges [v0, v1] = γba, [v1, v2] = γab, and [v0, v2] is the degenerate edge given by
the constant path at b. We also include the case a = b by setting L⊠

γbb
= id.

Clearly the maps Lγab
and L⊠

γab
are compatible with Adams’ map. More pre-

cisely, there is a commutative diagram

(4.2)

Cobar⊠(C(X))(b, b) C□(PX)(b, b)

Cobar⊠(C(X))(a, b) C□(PX)(a, b).

AX

L⊠
γab

≃ (Lγab
)∗≃

AX

The diagram (4.2) implies that Theorem 1.8 is equivalent to the following propo-
sition, whose proof is postponed to the end of this section.

Proposition 4.1. For any pointed path-connected space (X, b),

AX : Cobar⊠(C(X))(b, b) → C□(PX)(b, b)

is a quasi-isomorphism.

For any b ∈ X, consider the dg subcoalgebra C0(X, b) of C(X) generated by
simplices with all vertices at b. Let C0(X, b) be the categorical subcoalgebra of
C(X) with C0(X, b) = C0(X, b) as R-modules and S(C0(X, b)) = {b}.

Define an R-linear map

E− : s
−1C0(X, b) −→

(
Rb ⊠ s−1C0(X, b)⊠Rb

)
⊕Rb,

s−1σ 7−→ s−1σ − e(σ), σ : (∆n, vertices) → (X, b),

where e is (2.2). Extend E− multiplicatively over ⊠. This induces a linear map

E− : Cobar
(
C0(X, b)

)
−→ Cobar⊠

(
C0(X, b)

)
,

which is a chain map by straightforward calculation. Moreover, E− is a dg algebra
isomorphism, whose inverse E+ is given by s−1σ 7→ s−1σ + e(σ) on generators.

Denote by

ιb : C
0(X, b) ↪→ C(X)

the natural inclusion. Using the family OX (4.1), one can deform each simplex in
X to one with all vertices at b, proceeding by induction on the dimension of the
simplex. This procedure induces a morphism of categorical coalgebras

fOX
: C(X) → C0(X, b)

satisfying fOX
◦ ιb = idC0(X,b), as well as an R-linear map HOX

: C•(X) → C•+1(X)
serving as a homotopy between idC(X) and the morphism ιb ◦ fOX

. Consequently,
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Cobar⊠(fOX
) ◦ Cobar⊠(ιb) is the identity on Cobar⊠(C0(X, b))(b, b), and the exten-

sion of HOX
to a derivation, ĤOX

: Cobar⊠(C(X))(b, b) → Cobar⊠(C(X))(b, b), is a

chain homotopy between the identity and Cobar⊠(ιb) ◦ Cobar⊠(fOX
). Therefore,

the natural inclusion

Cobar⊠(ιb) : Cobar
⊠(C0(X, b)) ↪→ Cobar⊠(C(X))(b, b)

is a chain-homotopy equivalence.

Clearly the maps E− and Cobar⊠(ιb) are compatible with Adams’ map, i.e., there
is a commutative diagram
(4.3)

Cobar(C0(X, b)) Cobar⊠(C0(X, b))(b, b) Cobar⊠(C(X))(b, b)

C□(PX)(b, b).

E−
∼=

AX

Cobar⊠(ιb)

≃

AX
AX

The diagram (4.3) implies that Corollary 1.9 is equivalent to Proposition 4.1.

Remark 4.2. Adams’ original proof [Ada56] shows that

AX : Cobar(C1(X, b)) −→ C□(PX)(b, b)

is a quasi-isomorphism if X is simply connected. Note that the natural inclusion

Cobar(C1(X, b)) ↪→ Cobar(C0(X, b))

is compatible with Adams’ map, and is a quasi-isomorphism provided that X is
simply connected. Consequently, by (4.2)(4.3),

AX : Cobar⊠(C(X))(a, b) −→ C□(PX)(a, b)

is a quasi-isomorphism for all a, b ∈ X whenever X is simply connected.

Proof of Proposition 4.1. For any b ∈ X, denote by X̃b the universal cover of X at
b and denote by

πb : (X̃b, [cb]) → (X, b)

be the universal covering map, where [cb] denotes the homotopy class of the constant
path cb : [0, 1] → X at b.

First, by lifting paths in X to X̃b, we obtain a homeomorphism of spaces

PX(b, b) ∼=
⊔

α∈π1(X,b)

PX̃b([cb], α),

which induces an isomorphism of chain complexes

(4.4) C□(PX)(b, b) ∼= C□
( ⊔

α∈π1(X,b)

PX̃b([cb], α)
)
=

⊕
α∈π1(X,b)

C□(PX̃b)([cb], α).

Next, by lifting necklaces in X to X̃b, we obtain a chain complex isomorphism

(4.5) Cobar⊠(C(X))(b, b) ∼=
⊕

α∈π1(X,b)

Cobar⊠(C(X̃b))([cb], α).

More precisely, recall that ∆d1 ∨ · · · ∨ ∆dk is the wedge sum of ∆d1 , . . . ,∆dk formed
by successively identifying the last vertex of each simplex with the first vertex of
the next. Every necklace in X

σ : (∆d1 ∨ · · · ∨ ∆dk , v0, vd) → (X, b, b)
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uniquely lifts to a necklace in X̃b

σ̃ : (∆d1 ∨ · · · ∨ ∆dk , v0, vd) → (X̃b, [cb], π
−1(b))

such that πb ◦ σ̃ = σ, where d = d1+ · · ·+dk and vi denotes the (i+1)-th vertex of
∆d1 ∨ · · · ∨∆dk . The endpoint σ̃(vd) is uniquely determined by the based homotopy
class of σ ◦ γ for an arbitrary path γ in ∆d1 ∨ · · · ∨ ∆dk from v0 to vd. Conversely,

every necklace in X̃b arises as the lift of a unique necklace in X. Thus, for each
k ≥ 0 there is an R-module isomorphism

Rb ⊠ (s−1C(X))⊠k ⊠Rb
∼=

⊕
α∈π1(X,b)

R[cb] ⊠ (s−1C(X̃b))
⊠k ⊠Rα,

and taken together, these induce the isomorphism (4.5).
By Remark 4.2, for any α ∈ π1(X, b),

AX̃b
: Cobar⊠(C(X̃b))([cb], α) → C□(PX̃b)([cb], α)

is a quasi-isomorphism. The proof of the proposition is then completed by observing
that the isomorphisms (4.4) and (4.5) are compatible with Adams’ map. □

5. Extension of the results to arbitrary spaces

In this section we give the constructions of CP(X), ĨtX , ĨX , F̃X , G̃X , and H̃X

for any topological space X, thereby proving Theorem 1.10. The constructions of

CP(X) and ĨtX are the key ingredients; once these are established, the remaining
results follow by arguments parallel to those used for Theorem 1.2 and Theorem 1.4.

We define the dg category CP(X) as follows. The objects are the points of X.
For any a, b ∈ X, the morphism complex is

CP(X)(a, b) =
⊕

β∈Π1X(a,b)

Cobar
∏
(C(X̃a))([ca], β),

where Π1X denotes the fundamental groupoid of X, (X̃a, [ca]) is the universal

covering space of (X, a), and β ∈ Π1X(a, b) is viewed as a point of X̃a via the
canonical inclusion

Π1X(a, b) ↪→
⋃
c∈X

Π1X(a, c) = X̃a.

The composition of morphisms is induced by the map

(R[ca] ⊗ (s−1C(X̃a))
⊗n ⊗Rβ)⊗ (R[cb] ⊗ (s−1C(X̃b))

⊗n′
⊗Rγ)

→ R[ca] ⊗ (s−1C(X̃a))
⊗n+n′

⊗Rβ◦γ

(1R ⊗ x⊗ 1R)⊗ (1R ⊗ y ⊗ 1R) 7→ 1R ⊗ (x⊗ β∗(y))⊗ 1R

for any a, b, c ∈ X, β ∈ Π1X(a, b) and γ ∈ Π1X(b, c), where β∗ is the map on the

tensor factors of singular chains induced by the homeomorphism X̃b → X̃a, z 7→ βz.

For any a, b ∈ X, define ĨtX to be the comoposition of chain maps

(5.1) C□(PX)(a, b) ∼=
⊕

β∈Π1X(a,b)

C□(PX̃a)([ca], β) → CP(X)(a, b),

where the first map is defined in the same manner as (4.4), and the second map is
induced by ItX̃a

in (2.3) on each direct summand.
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Remark 5.1. The construction of CP(X) and ItX is motivated by an idea of Irie.
Irie proposed a chain model for the free loop space (path space) and a version
of the iterated integral map based on “de Rham chains” as a simplification of
his construction in [Iri17], which was established by the second-named author in
[Wan23, Chapter 2]. This approach, unlike CP, uses the fundamental groupoid
without referring to universal covering spaces.

We extend ĨtX to an A∞-functor

ĨX = {ĨX,k}k≥1 : C□(PX) → CP(X)

with ĨX,1 = ĨtX as follows. Recall the cosimplicial space [n] 7→ PnX(a, b) in (3.2)
for a, b ∈ X. There is a sequence of canonical isomorphisms of chain complexes

C(PnX(a, b)) ∼=
⊕

β∈Π1X(a,b)

C(PnX̃a([ca], β)), n ≥ 0

which is compatible with the cosimplicial structures, and induces an inclusion⊕
β∈Π1X(a,b)

Tot
∏(

{C(PnX̃a([ca], β))}n≥0
)
↪→ Tot

∏(
{C(PnX(a, b))}n≥0

)
.

For every k ≥ 1, the linear map JX,k from Lemma 3.1 factors through the above
inclusion with a0 = a, ak = b. Then we define

ĨX,k := ÃW ◦ ẽv∗ ◦ JX,k :

k⊗
i=1

C□(PX)(ai−1, ai) → CP(X)(a0, ak),

where the maps ẽv∗, ÃW are induced, on each direct summand, by

ev∗ : Tot
∏(

{C(PnX̃a([ca], β))}n≥0
)
→ Tot

∏(
{C({[ca]} × (X̃a)

n × {β})}n≥0
)

and AW : Tot
∏(

{C({[ca]} × (X̃a)
n × {β})}n≥0

)
→ Cobar

∏
(C(X̃a))([ca], β)

as appearing in (3.3) and (3.1), respectively.
We define the functor

G̃X : Cobar⊠(C(X)) → CP(X)

as follows. It acts as the identity on objects, and for a, b ∈ X its action on mor-
phisms is given by the composition of chain maps

Cobar⊠(C(X))(a, b) ∼=
⊕

β∈Π1X(a,b)

Cobar⊠(C(X̃a))([ca], β) → CP(X),

where the first map is defined in the same manner as (4.5), and the second map is
induced by GX̃a

in (2.8) on each direct summand.

We construct an A∞-homotopy H̃X between F̃X = ĨX ◦AX and G̃X as follows.
For any k ≥ 1 and any k-necklace in X

σ⃗ : ∆d⃗ → X, where d⃗ = (d1, . . . ,dk), di = (di,1, . . . , di,ni
),

as in (3.7), σ⃗ uniquely lifts to a k-necklace in X̃σ⃗(v0)˜⃗σ : (∆d⃗, v0) → (X̃σ⃗(v0), [cσ⃗(v0)])

such that πσ⃗(v0) ◦ ˜⃗σ = σ⃗, where v0 denotes the first vertex of ∆d⃗. Then we define

H̃X(⊗k
i=1 ⊠

ni
j=1 s

−1σi,j) = ˜⃗σ∗(ψd⃗)
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where ψd⃗ ∈ Cobar
∏
(C(∆d⃗))(v0, vd) is provided in Lemma 3.6.

By construction, ĨX , F̃X , G̃X , and H̃X are natural in X. Theorem 1.10 follows.

Remark 5.2. There is a natural transformation

π : CP ⇒ Cobar
∏

◦ C∆

such that for any topological space X, πX is the identity on objects, and

πX : CP(X)(a, b) → Cobar
∏
(C(X))(a, b), a, b ∈ X

is induced by the universal covering map πa : (X̃a, [ca]) → (X, a) on each direct
summand. It is straightforward to check that IX , FX , GX and HX are the com-

positions of πX with ĨX , F̃X , G̃X and H̃X , respectively. If X is simply connected,
then πX is an isomorphism of dg categories.

It seems hard to formulate an analogue of Remark 1.5 in the context here.
Nonetheless, the following is true.

Proposition 5.3. For any topological spaceX, the functor G̃X is a quasi-equivalence.

Proof. We know from Section 3.3 that GX is a quasi-equivalence for simply con-

nected X. The lemma follows by applying this to X̃a in the construction of G̃X . □

Theorem 1.10 and Proposition 5.3 imply that:

Corollary 5.4. For any topological space X:

(1) The functor

AX : Cobar⊠(C(X)) → C□(PX)

induced by Adams’ map is a quasi-equivalence if and only if the A∞-functor

ĨX : C□(PX) → CP(X)

motivated by Chen’s iterated integral map is an A∞-quasi-equivalence.

(2) (Given Theorem 1.8) The A∞-functor ĨX is an A∞-quasi-equivalence.
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